欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

(三)--Openssl 实现国密算法(加密和解密)

程序员文章站 2022-03-16 08:49:25
...

上一次讲了产生**,这次我们讲一下加密解密的实现。
先说一下加密解密的流程,一下这些内容都是从国密局发布的国密标准文档里面摘录出来的。大家可以去国密局的网站上自己下载。

下列符号适用于本部分。
A,B:使用公钥密码系统的两个用户。
a,b: Fq中的元素,它们定义Fq上的一条椭圆曲线E。
dB:用户B的私钥。
E(Fq): Fq上椭圆曲线E 的所有有理点(包括无穷远点O)组成的集合。
Fq
:包含q个元素的有限域。
G:椭圆曲线的一个基点,其阶为素数。
2Hash( ):密码杂凑函数。
Hv
( ):消息摘要长度为v比特的密码杂凑函数。
KDF( ):**派生函数。
M :待加密的消息。
M ′:解密得到的消息。
n:基点G的阶(n是# E(Fq)的素因子)。
O:椭圆曲线上的一个特殊点,称为无穷远点或零点,是椭圆曲线加法群的单位元。
PB:用户B的公钥。
q:有限域Fq中元素的数目。
x∥y: x与y的拼接,其中x、 y可以是比特串或字节串。
[k]P:椭圆曲线上点P的k倍点,即, [k]P= P + P + · · · + P(k个, k是正整数)。
[x,y]:大于或等于x且小于或等于y的整数的集合。
⌈x⌉:顶函数,大于或等于x的最小整数。例如⌈7⌉=7, ⌈8.3⌉=9。
⌊x⌋:底函数,小于或等于x的最大整数。例如⌊7⌋=7, ⌊8.3⌋=8。
#E(Fq): E(Fq)上点的数目,称为椭圆曲线E(Fq)的阶

加密过程

设需要发送的消息为比特串M, klen为M的比特长度。
为了对明文M进行加密,作为加密者的用户A应实现以下运算步骤:
A1:用随机数发生器产生随机数k∈[1,n-1];
A2:计算椭圆曲线点C1=[k]G=(x1,y1),按本文本第1部分4.2.8和4.2.4给出的细节,将C1的数据类
型转换为比特串;
A3:计算椭圆曲线点S=[h]PB,若S是无穷远点,则报错并退出;
A4:计算椭圆曲线点[k]PB=(x2,y2),按本文本第1部分4.2.5和4.2.4给出的细节,将坐标x2、 y2 的
数据类型转换为比特串;
A5:计算t=KDF(x2 ∥ y2, klen),若t为全0比特串,则返回A1;
A6:计算C2 = M ⊕ t;
A7:计算C3 = Hash(x2 ∥ M ∥ y2);
A8:输出密文C = C1 ∥ C2 ∥ C3。

道人家给画好了,我们需要做的就是把它转化成代码….对了,还有一张流程图。

(三)--Openssl 实现国密算法(加密和解密)
接下来上代码:

    unsigned char* t, *hm;
    BIGNUM* rand;
    EC_POINT* rG, *rK;
    BIGNUM *rKx, *rKy, *rGx, *rGy;

    unsigned char bK[65] = {0};
    unsigned char C3[33] = {0};

    rG = EC_POINT_new(this->mGroup);
    rK = EC_POINT_new(this->mGroup);
    rand = BN_new();

    //随机数k∈[1,n-1]
    BN_rand_range(rand, this->z);

    //C1=[k]G=(x1,y1)
    EC_POINT_mul(this->mGroup, rG, NULL,
        this->mGP, rand, this->ctx);

    rGx = BN_new();
    rGy = BN_new();
    if(!EC_POINT_get_affine_coordinates_GFp(this->mGroup, 
        rG, rGx, rGy, this->ctx))
    {
        return -3;
    }

    BN_bn2bin(rGx, pd);
    BN_bn2bin(rGy, &pd[32]);

    //[k]PB=(x2,y2)
    EC_POINT_mul(this->mGroup, rK, NULL, 
        EC_KEY_get0_public_key(this->mKey), 
        rand, this->ctx);

    rKx = BN_new();
    rKy = BN_new();
    if(!EC_POINT_get_affine_coordinates_GFp(this->mGroup, 
        rK, rKx, rKy, this->ctx))
    {
        return -3;
    }

    //t=KDF(x2||y2, klen)   
    BN_bn2bin(rKx, bK);
    BN_bn2bin(rKy, &bK[32]);

    t = new BYTE[elen + 1];
    memset(t, 0, elen + 1);

    this->mKDF(bK, 64, elen, t);

    for (int i = elen; i--;)
    {
        t[i] = t[i]^pe[i];
    }

    //C3 = Hash(x2||M||y2)
    hm = new unsigned char[elen + 65];
    memset(hm, 0, elen + 65);

    memcpy(hm, bK, 32);
    memcpy(&hm[32], pe, elen);
    memcpy(&hm[elen + 32], &bK[32], 32);

    hash(hm, elen + 64, C3, "sha256");

    //C = C1||C2||C3
    memcpy(&pd[64], t,  elen);
    memcpy(&pd[64 + elen], C3, 32);

    delete[] t;
    delete[] hm;

    t = NULL;
    hm = NULL;

    EC_POINT_free(rG);
    EC_POINT_free(rK);

    return 0;


如果细心的朋友会发现我少了两步:
1.A3(校验rK这个点的)
2.校验 是否t为0
怎么说呢….因为我比较懒,而且也没有这个必要,因为我们用的是openssl,以上两种情况不会出现,所以就省略了,当然加上也无可厚非。

加密之后我们就要解密了,能拆就能立能砸就能砌。
解密流程

解密算法
设klen为密文中C2的比特长度。
为了对密文C=C1 ∥ C2 ∥ C3 进行解密,作为解密者的用户B应实现以下运算步骤:
B1:从C中取出比特串C1,按本文本第1部分4.2.3和4.2.9给出的细节,将C1的数据类型转换为椭
圆曲线上的点,验证C1是否满足椭圆曲线方程,若不满足则报错并退出;
B2:计算椭圆曲线点S=[h]C1,若S是无穷远点,则报错并退出;
B3:计算[dB]C1=(x2,y2),按本文本第1部分4.2.5和4.2.4给出的细节,将坐标x2、 y2的数据类型转
换为比特串;
B4:计算t=KDF(x2 ∥ y2, klen),若t为全0比特串,则报错并退出;
B5:从C中取出比特串C2,计算M ′ = C2 ⊕ t;
B6:计算u = Hash(x2 ∥ M ′ ∥ y2),从C中取出比特串C3,若u ̸= C3,则报错并退出;
B7:输出明文M ′。

(三)--Openssl 实现国密算法(加密和解密)

下面是解密的代码


    unsigned char* t, *c2, *hm;
    unsigned char bC1x[65] = {0};
    unsigned char bC1y[65] = {0};
    unsigned char bK[65] = {0};
    unsigned char u[33] = {0}; 

    unsigned int mlen, hm_len;  

    EC_POINT *rG, *rK;
    BIGNUM *C1x, *C1y, *rKx, *rKy;

    //取出rG
    C1x = BN_new();
    C1y = BN_new();

    memcpy(&bC1x[32], pe, 32);
    memcpy(&bC1y[32], &pe[32], 32);

    BN_bin2bn(bC1x, 64, C1x);
    BN_bin2bn(bC1y, 64, C1y);

    rG = EC_POINT_new(this->mGroup);
    if(!EC_POINT_set_affine_coordinates_GFp(this->mGroup, 
        rG, C1x, C1y, this->ctx))
    {
        EC_POINT_free(rG);
        return -1;
    }

    //求得rK
    rK = EC_POINT_new(this->mGroup);
    EC_POINT_mul(this->mGroup, rK, NULL, rG, 
        EC_KEY_get0_private_key(this->mKey), 
        this->ctx);

    rKx = BN_new();
    rKy = BN_new();
    if(!EC_POINT_get_affine_coordinates_GFp(this->mGroup, 
        rK, rKx, rKy, this->ctx))
    {
        EC_POINT_free(rG);
        EC_POINT_free(rK);
        return -2;
    }

    //求取hv 解密 
    BN_bn2bin(rKx, bK);
    BN_bn2bin(rKy, &bK[32]);

    mlen = elen - 96;

    c2 = new unsigned char[mlen + 1];
    memset(c2, 0, mlen + 1);
    memcpy(c2, &pe[64], mlen);

    t = new unsigned char[mlen + 1];
    memset(t, 0, mlen + 1);
    this->mKDF(bK, 64, elen - 96, t);

    for (int i = elen - 96; i--;)
    {
        t[i] = t[i]^c2[i];
    }

    hm_len = mlen + 64;
    hm = new unsigned char[hm_len + 1];
    memset(hm, 0,hm_len + 1);

    BN_bn2bin(rKx, hm);
    memcpy(&hm[32], t, mlen);
    BN_bn2bin(rKy, &hm[32 + mlen]);

    //校验hash值
    hash(hm, hm_len, u, "sha256");
    for (int i = 0; i < 32;i++)
    {
        if (u[i] != pe[elen - 32 + i])
        {
            EC_POINT_free(rG);
            EC_POINT_free(rK);

            delete[] t;
            delete[] c2;
            delete[] hm;

            t = NULL;
            c2 = NULL;
            hm = NULL;

            return -3;
        }   
    }

    memcpy(pd, t, mlen);

    EC_POINT_free(rG);
    EC_POINT_free(rK);

    delete[] t;
    delete[] c2;
    delete[] hm;

    t = NULL;
    c2 = NULL;
    hm = NULL;

    return 0;


这就是加密和解密的过程了。
 

相关标签: OpenSSL