操作符重载(一)
程序员文章站
2023-04-05 16:52:15
[TOC] 1. 操作符重载的概念 操作符重载的本质 操作符重载的本质是用特殊形式的函数扩展操作符的功能 C++通过 关键字定义操作符重载函数 操作符重载遵循相同的函数重载规则 操作符重载的规则 在进行操作符重载时,必须遵循以下三条规则 不能改变原操作符的优先级 不能改变操作数的个数 不能改变操作符 ......
1. 操作符重载的概念
操作符重载的本质
操作符重载的本质是用特殊形式的函数扩展操作符的功能
- c++通过
operator
关键字定义操作符重载函数 - 操作符重载遵循相同的函数重载规则
操作符重载的规则
在进行操作符重载时,必须遵循以下三条规则
- 不能改变原操作符的优先级
- 不能改变操作数的个数
- 不能改变操作符的原有语义
操作符重载的实现
全局函数和成员函数都可以实现对操作符的重载,重载为全局函数的语法规则为
/* * sign为预定义的操作符,如:+, -, *, /; * lp和rp分别为左操作数和右操作数. */ type operator sign (const type &lp, const type &rp) { }
如果重载为全局函数,则需要在友元的辅助下才能实现,因此,一般选择将操作符重载为类的成员函数
class type { public: type operator sign (const type &rp) { } };
- 比起全局操作符重载函数少一个参数(左操作数)
- 不需要依赖友元就可以完成操作符重载
- 编译器优先在成员函数中寻找操作符重载函数
#include <stdio.h> class complex { int a; int b; public: complex(int a = 0, int b = 0) { this->a = a; this->b = b; } int geta() { return a; } int getb() { return b; } complex operator + (const complex &p) { complex ret; printf("complex operator + (const complex& p)\n"); ret.a = this->a + p.a; ret.b = this->b + p.b; return ret; } friend complex operator + (const complex &p1, const complex &p2); }; complex operator + (const complex &p1, const complex &p2) { complex ret; printf("complex operator + (const complex& p1, const complex& p2)\n"); ret.a = p1.a + p2.a; ret.b = p1.b + p2.b; return ret; } int main() { complex c1(1, 2); complex c2(3, 4); complex c3 = c1 + c2; // c1.operator + (c2) printf("c3.a = %d, c3.b = %d\n", c3.geta(), c3.getb()); return 0; }
2. 复数类的实现
下面,我们通过一个复数类,来分别实现算术运算操作符、比较操作符和赋值操作符的重载,以下是头文件和源文件的非重载部分代码。
complex.h
#ifndef _complex_h_ #define _complex_h_ class complex { double a; double b; public: complex(double a = 0, double b = 0); double geta(); double getb(); double getmodulus(); complex operator + (const complex &c); complex operator - (const complex &c); complex operator * (const complex &c); complex operator / (const complex &c); bool operator == (const complex &c); bool operator != (const complex &c); complex &operator = (const complex &c); }; #endif
complex.cpp
#include "complex.h" #include <cmath> complex::complex(double a, double b) { this->a = a; this->b = b; } double complex::geta() { return a; } double complex::getb() { return b; } double complex::getmodulus() { return sqrt(a * a + b * b); }
运算操作符重载
complex.cpp
complex complex::operator + (const complex &c) { complex ret; ret.a = a + c.a; ret.b = b + c.b; return ret; } complex complex::operator - (const complex &c) { complex ret; ret.a = a - c.a; ret.b = b - c.b; return ret; } complex complex::operator * (const complex &c) { complex ret; ret.a = a * c.a - b * c.b; ret.b = a * c.b + b * c.a; return ret; } complex complex::operator / (const complex &c) { complex ret; double cm = c.a * c.a + c.b * c.b; ret.a = (a * c.a + b * c.b) / cm; ret.b = (b * c.a - a * c.b) / cm; return ret; }
比较操作符重载
complex.cpp
bool complex::operator == (const complex &c) { return (a == c.a) && (b == c.b); } bool complex::operator != (const complex &c) { return !(*this == c); }
赋值操作符重载
complex.cpp
complex &complex::operator = (const complex &c) { if (this != &c) { a = c.a; b = c.b; } return *this; }
注意,赋值操作符有几点特殊之处:
- c++规定赋值操作符只能重载为成员函数
-
赋值操作符重载函数返回类型为引用,目的是为了实现连等,如
a = b = c
复数类测试
main.cpp
#include "complex.h" #include <cstdio> int main() { complex c1(1, 2); complex c2(3, 6); complex c3 = c2 - c1; complex c4 = c1 * c3; complex c5 = c2 / c1; printf("c3.a = %f, c3.b = %f\n", c3.geta(), c3.getb()); printf("c4.a = %f, c4.b = %f\n", c4.geta(), c4.getb()); printf("c5.a = %f, c5.b = %f\n", c5.geta(), c5.getb()); complex c6(2, 4); printf("c3 == c6 : %d\n", c3 == c6); printf("c3 != c4 : %d\n", c3 != c4); (c3 = c2) = c1; printf("c1.a = %f, c1.b = %f\n", c1.geta(), c1.getb()); printf("c2.a = %f, c2.b = %f\n", c2.geta(), c2.getb()); printf("c3.a = %f, c3.b = %f\n", c3.geta(), c3.getb()); return 0; }
3. 赋值操作符重载和拷贝构造函数
赋值操作符重载与深拷贝
赋值操作符重载和拷贝构造函数具有相同的作用和意义,那么,c++什么时候调用赋值操作符重载函数?什么时候调用拷贝构造函数?
classname c1; classname c2 = c1; //调用拷贝构造函数 classname c3(c1); //调用拷贝构造函数 classname c4; c4 = c1; //调用赋值操作符重载函数
和拷贝构造函数类似
- 编译器为每个类默认重载了赋值操作符
- 默认的赋值操作符重载函数仅完成浅拷贝
- 当需要进行深拷贝时,必须重载赋值操作符
作为一般性原则,重载赋值操作符,必然需要实现深拷贝!!!
#include <iostream> #include <string> using namespace std; class test { int *m_pointer; public: test() { m_pointer = null; } test(int i) { m_pointer = new int(i); } /*拷贝构造函数实现深拷贝*/ test(const test &obj) { m_pointer = new int(*obj.m_pointer); } /*重载赋值操作符实现深拷贝*/ test &operator = (const test &obj) { if (this != &obj) { delete m_pointer; m_pointer = new int(*obj.m_pointer); } return *this; } void print() { cout << "m_pointer = " << hex << m_pointer << endl; } ~test() { delete m_pointer; } }; int main() { test t1 = 1; test t2; t2 = t1; t1.print(); t2.print(); return 0; }
数组类intarray改进
intarray.h
#ifndef _intarray_h_ #define _intarray_h_ class intarray { public: intarray &operator = (const intarray &obj); //add }; #endif
intarray.cpp
intarray &intarray::operator = (const intarray &obj) { if (this != &obj) { int *pointer = new int[obj.m_length]; if (pointer != null) { for (int i = 0; i < obj.m_length; i++) { pointer[i] = obj.m_pointer[i]; } m_length = obj.m_length; delete m_pointer; m_pointer = pointer; } } return *this; }
推荐阅读