8 种经常被忽视的 SQL 错误用法,你有没有踩过坑?
1、limit 语句
分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。比如对于下面简单的语句,一般 dba 想到的办法是在 type, name, create_time 字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。
select * from operation where type = 'sqlstats' and name = 'slowlog' order by create_time limit 1000, 10;
好吧,可能 90% 以上的 dba 解决该问题就到此为止。但当 limit 子句变成 “limit 1000000,10” 时,程序员仍然会抱怨:我只取 10 条记录为什么还是慢?
要知道数据库也并不知道第 1000000 条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。
在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。sql 重新设计如下:
select * from operation where type = 'sqlstats' and name = 'slowlog' and create_time > '2017-03-16 14:00:00' order by create_time limit 10;
在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。
2、隐式转换
sql 语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句:
mysql> explain extended select * > from my_balance b > where b.bpn = 14000000123 > and b.isverified is null ; mysql> show warnings; | warning | 1739 | cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn'
其中字段 bpn 的定义为 varchar(20),mysql 的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。
上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。
3、关联更新、删除
虽然 mysql5.6 引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成 join。
比如下面 update 语句,mysql 实际执行的是循环 / 嵌套子查询(dependent subquery),其执行时间可想而知。
update operation o set status = 'applying' where o.id in (select id from (select o.id, o.status from operation o where o.group = 123 and o.status not in ( 'done' ) order by o.parent, o.id limit 1) t);
执行计划:
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | extra | +----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+ | 1 | primary | o | index | | primary | 8 | | 24 | using where; using temporary | | 2 | dependent subquery | | | | | | | | impossible where noticed after reading const tables | | 3 | derived | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | using where; using filesort | +----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
重写为 join 之后,子查询的选择模式从 dependent subquery 变成 derived,执行速度大大加快,从 7 秒降低到 2 毫秒
update operation o join (select o.id, o.status from operation o where o.group = 123 and o.status not in ( 'done' ) order by o.parent, o.id limit 1) t on o.id = t.id set status = 'applying'
执行计划简化为:
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | extra | +----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+ | 1 | primary | | | | | | | | impossible where noticed after reading const tables | | 2 | derived | o | ref | idx_2,idx_5 | idx_5 | 8 | const | 1 | using where; using filesort | +----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
4、混合排序
mysql 不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。
select * from my_order o inner join my_appraise a on a.orderid = o.id order by a.is_reply asc, a.appraise_time desc limit 0, 20
执行计划显示为全表扫描:
+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | extra +----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+ | 1 | simple | a | all | idx_orderid | null | null | null | 1967647 | using filesort | | 1 | simple | o | eq_ref | primary | primary | 122 | a.orderid | 1 | null | +----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+
由于 is_reply 只有 0 和 1 两种状态,我们按照下面的方法重写后,执行时间从 1.58 秒降低到 2 毫秒。
select * from ((select * from my_order o inner join my_appraise a on a.orderid = o.id and is_reply = 0 order by appraise_time desc limit 0, 20) union all (select * from my_order o inner join my_appraise a on a.orderid = o.id and is_reply = 1 order by appraise_time desc limit 0, 20)) t order by is_reply asc, appraisetime desc limit 20;
5、exists语句
mysql 对待 exists 子句时,仍然采用嵌套子查询的执行方式。如下面的 sql 语句:
select * from my_neighbor n left join my_neighbor_apply sra on n.id = sra.neighbor_id and sra.user_id = 'xxx' where n.topic_status < 4 and exists(select 1 from message_info m where n.id = m.neighbor_id and m.inuser = 'xxx') and n.topic_type <> 5
执行计划为:
+----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | extra | +----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+ | 1 | primary | n | all | | null | null | null | 1086041 | using where | | 1 | primary | sra | ref | | idx_user_id | 123 | const | 1 | using where | | 2 | dependent subquery | m | ref | | idx_message_info | 122 | const | 1 | using index condition; using where | +----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+
去掉 exists 更改为 join,能够避免嵌套子查询,将执行时间从 1.93 秒降低为 1 毫秒。
select * from my_neighbor n inner join message_info m on n.id = m.neighbor_id and m.inuser = 'xxx' left join my_neighbor_apply sra on n.id = sra.neighbor_id and sra.user_id = 'xxx' where n.topic_status < 4 and n.topic_type <> 5
新的执行计划:
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | extra | +----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+ | 1 | simple | m | ref | | idx_message_info | 122 | const | 1 | using index condition | | 1 | simple | n | eq_ref | | primary | 122 | ighbor_id | 1 | using where | | 1 | simple | sra | ref | | idx_user_id | 123 | const | 1 | using where | +----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
6、条件下推
外部查询条件不能够下推到复杂的视图或子查询的情况有:
聚合子查询;
含有 limit 的子查询;
union 或 union all 子查询;
输出字段中的子查询;
如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后
select * from (select target, count(*) from operation group by target) t where target = 'rm-xxxx'
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | extra | +----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+ | 1 | primary | <derived2> | ref | <auto_key0> | <auto_key0> | 514 | const | 2 | using where | | 2 | derived | operation | index | idx_4 | idx_4 | 519 | null | 20 | using index | +----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
确定从语义上查询条件可以直接下推后,重写如下:
select target, count(*) from operation where target = 'rm-xxxx' group by target
执行计划变为:
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | extra | +----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+ | 1 | simple | operation | ref | idx_4 | idx_4 | 514 | const | 1 | using where; using index | +----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
7、提前缩小范围
先上初始 sql 语句:
select * from my_order o left join my_userinfo u on o.uid = u.uid left join my_productinfo p on o.pid = p.pid where ( o.display = 0 ) and ( o.ostaus = 1 ) order by o.selltime desc limit 0, 15
该 sql 语句原意是:先做一系列的左连接,然后排序取前 15 条记录。从执行计划也可以看出,最后一步估算排序记录数为 90 万,时间消耗为 12 秒。
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | extra | +----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+ | 1 | simple | o | all | null | null | null | null | 909119 | using where; using temporary; using filesort | | 1 | simple | u | eq_ref | primary | primary | 4 | o.uid | 1 | null | | 1 | simple | p | all | primary | null | null | null | 6 | using where; using join buffer (block nested loop) | +----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
由于最后 where 条件以及排序均针对最左主表,因此可以先对 my_order 排序提前缩小数据量再做左连接。sql 重写后如下,执行时间缩小为 1 毫秒左右。
select * from ( select * from my_order o where ( o.display = 0 ) and ( o.ostaus = 1 ) order by o.selltime desc limit 0, 15 ) o left join my_userinfo u on o.uid = u.uid left join my_productinfo p on o.pid = p.pid order by o.selltime desc limit 0, 15
再检查执行计划:子查询物化后(select_type=derived) 参与 join。虽然估算行扫描仍然为 90 万,但是利用了索引以及 limit 子句后,实际执行时间变得很小。
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+ | id | select_type | table | type | possible_keys | key | key_len | ref | rows | extra | +----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+ | 1 | primary | <derived2> | all | null | null | null | null | 15 | using temporary; using filesort | | 1 | primary | u | eq_ref | primary | primary | 4 | o.uid | 1 | null | | 1 | primary | p | all | primary | null | null | null | 6 | using where; using join buffer (block nested loop) | | 2 | derived | o | index | null | idx_1 | 5 | null | 909112 | using where | +----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
8、中间结果集下推
再来看下面这个已经初步优化过的例子 (左连接中的主表优先作用查询条件):
select a.*, c.allocated from ( select resourceid from my_distribute d where isdelete = 0 and cusmanagercode = '1234567' order by salecode limit 20) a left join ( select resourcesid, sum(ifnull(allocation, 0) * 12345) allocated from my_resources group by resourcesid) c on a.resourceid = c.resourcesid
那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。
其实对于子查询 c,左连接最后结果集只关心能和主表 resourceid 能匹配的数据。因此我们可以重写语句如下,执行时间从原来的 2 秒下降到 2 毫秒。
select a.*, c.allocated from ( select resourceid from my_distribute d where isdelete = 0 and cusmanagercode = '1234567' order by salecode limit 20) a left join ( select resourcesid, sum(ifnull(allocation, 0) * 12345) allocated from my_resources r, ( select resourceid from my_distribute d where isdelete = 0 and cusmanagercode = '1234567' order by salecode limit 20) a where r.resourcesid = a.resourcesid group by resourcesid) c on a.resourceid = c.resourcesid
但是子查询 a 在我们的 sql 语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用 with 语句再次重写:
with a as ( select resourceid from my_distribute d where isdelete = 0 and cusmanagercode = '1234567' order by salecode limit 20) select a.*, c.allocated from a left join ( select resourcesid, sum(ifnull(allocation, 0) * 12345) allocated from my_resources r, a where r.resourcesid = a.resourcesid group by resourcesid) c on a.resourceid = c.resourcesid
数据库编译器产生执行计划,决定着 sql 的实际执行方式。但是编译器只是尽力服务,所有数据库的编译器都不是尽善尽美的。
上述提到的多数场景,在其它数据库中也存在性能问题。了解数据库编译器的特性,才能避规其短处,写出高性能的 sql 语句。
程序员在设计数据模型以及编写 sql 语句时,要把算法的思想或意识带进来。
编写复杂 sql 语句要养成使用 with 语句的习惯。简洁且思路清晰的 sql 语句也能减小数据库的负担 。
“不积跬步,无以至千里”,希望未来的你能:有梦为马 随处可栖!加油,少年!
关注公众号:「java 知己」,每天更新java知识哦,期待你的到来!
- 发送「group」,与 10 万程序员一起进步。
- 发送「面试」,领取batj面试资料、面试视频攻略。
- 发送「玩转算法」,领取《玩转算法》系列视频教程。
- 千万不要发送「1024」...