学习大数据为什么要先学习Java?
计算机编程语言有很多,目前用的多一点的就是Java,C++,Python等等。目前大多数学习大数据的人都是选择学习Java,那Java到底好在哪呢?为什么学大数据之前要先学Java呢?我们今天就来分析一下。
推荐一个大数据学习群 119599574晚上20:10都有一节【免费的】大数据直播课程,专注大数据分析方法,大数据编程,大数据仓库,大数据案例,人工智能,数据挖掘都是纯干货分享,
不少想学习大数据的零基础学员都知道,学大数据部分课程之前要先学习一种计算机编程语言。大数据开发需要编程语言的基础,因为大数据的开发基于一些常用的高级语言,比如Java和.Net。不论是hadoop,还是数据挖掘,都需要有高级编程语言的基础。因此,如果想学习大数据开发,还是需要至少精通一门高级语言。
Java是目前使用最为广泛的网络编程语言之一
它不仅吸收了C++语言的各种优点,还摒弃了C++里难以理解的多继承、指针等概念,因此Java语言具有功能强大和简单易用两个特征。Java语言作为静态面向对象编程语言的代表,极好地实现了面向对象理论,允许程序员以优雅的思维方式进行复杂的编程。
Java有许多特性
Java具有简单性、面向对象、分布式、健壮性、安全性、平*立与可移植性、多线程、动态性等特点。
Java拥有极高的跨平台能力
Java可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等与传统的编程语言,如C、C++相比,Java能够更加容易上手,而比之微软平台的开发语言,如VB、MFC等,则有着跨平台运行的能力,尽管Java没有能够完全实现最初的一次编程、随处运行的口号,但是Java相比於其它较早的编程语言,仍然拥有极高的跨平台能力。
Java是一个强类型语言
Java是一个强类型语言,它允许扩展编译时检查潜在类型不匹配问题的功能。Java要求显式的方法声明,它不支持C风格的隐式声明。这些严格的要求保证编译程序能捕捉调用错误,这就导致更可靠的程序。可靠性方面最重要的增强之一是Java的存储模型。
不支持指针消除重写存储和讹误数据的可能性
Java不支持指针,它消除重写存储和讹误数据的可能性。类似地,Java自动的“无用单元收集”预防存储漏泄和其它有关动态存储分配和解除分配的有害错误。Java解释程序也执行许多运行时的检查,诸如验证所有数组和串访问是否在界限之内。
Java的异常处理使得系统更稳定
异常处理是Java中使得程序更稳健的另一个特征。异常是某种类似于错误的异常条件出现的信号。使用try/catch/finally语句,程序员可以找到出错的处理代码,这就简化了出错处理和恢复的任务。
最重要的是,Hadoop以及其他大数据处理技术很多都是用Java,例如Apache的基于Java的HBase和Accumulo以及 ElasticSearchas,因此学习Hadoop的一个首要条件,就是掌握Java语言编程。