欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

js加密(十一)yhz566 md5

程序员文章站 2023-03-26 20:10:27
1. http://www.yhz566.com/ 2. 登录加密 3. navigator = {}; var rng_psize = 256; var b64map = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789 ......

1. 

2. 登录加密

3. 

navigator = {};

var rng_psize = 256;

var b64map = "abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz0123456789+/";
var b64pad = "=";

function hex2b64(h) {
var i;
var c;
var ret = "";
for (i = 0; i + 3 <= h.length; i += 3) {
    c = parseint(h.substring(i, i + 3), 16);
    ret += b64map.charat(c >> 6) + b64map.charat(c & 63);
}
if (i + 1 == h.length) {
    c = parseint(h.substring(i, i + 1), 16);
    ret += b64map.charat(c << 2);
} else if (i + 2 == h.length) {
    c = parseint(h.substring(i, i + 2), 16);
    ret += b64map.charat(c >> 2) + b64map.charat((c & 3) << 4);
}
while ((ret.length & 3) > 0) ret += b64pad;
return ret;
}

// convert a base64 string to hex
function b64tohex(s) {
var ret = ""
var i;
var k = 0; // b64 state, 0-3
var slop;
for (i = 0; i < s.length; ++i) {
    if (s.charat(i) == b64pad) break;
    v = b64map.indexof(s.charat(i));
    if (v < 0) continue;
    if (k == 0) {
        ret += int2char(v >> 2);
        slop = v & 3;
        k = 1;
    } else if (k == 1) {
        ret += int2char((slop << 2) | (v >> 4));
        slop = v & 0xf;
        k = 2;
    } else if (k == 2) {
        ret += int2char(slop);
        ret += int2char(v >> 2);
        slop = v & 3;
        k = 3;
    } else {
        ret += int2char((slop << 2) | (v >> 4));
        ret += int2char(v & 0xf);
        k = 0;
    }
}
if (k == 1) ret += int2char(slop << 2);
return ret;
}

// convert a base64 string to a byte/number array
function b64toba(s) {
//piggyback on b64tohex for now, optimize later
var h = b64tohex(s);
var i;
var a = new array();
for (i = 0; 2 * i < h.length; ++i) {
    a[i] = parseint(h.substring(2 * i, 2 * i + 2), 16);
}
return a;
}

// prng4.js - uses arcfour as a prng
function arcfour() {
this.i = 0;
this.j = 0;
this.s = new array();
}

// initialize arcfour context from key, an array of ints, each from [0..255]
function arc4init(key) {
var i, j, t;
for (i = 0; i < 256; ++i) this.s[i] = i;
j = 0;
for (i = 0; i < 256; ++i) {
    j = (j + this.s[i] + key[i % key.length]) & 255;
    t = this.s[i];
    this.s[i] = this.s[j];
    this.s[j] = t;
}
this.i = 0;
this.j = 0;
}

function arc4next() {
var t;
this.i = (this.i + 1) & 255;
this.j = (this.j + this.s[this.i]) & 255;
t = this.s[this.i];
this.s[this.i] = this.s[this.j];
this.s[this.j] = t;
return this.s[(t + this.s[this.i]) & 255];
}

arcfour.prototype.init = arc4init;
arcfour.prototype.next = arc4next;

// plug in your rng constructor here
function prng_newstate() {
return new arcfour();
}

// pool size must be a multiple of 4 and greater than 32.
// an array of bytes the size of the pool will be passed to init()
var rng_psize = 256;

// random number generator - requires a prng backend, e.g. prng4.js
// for best results, put code like
// <body onclick='rng_seed_time();' onkeypress='rng_seed_time();'>
// in your main html document.
var rng_state;
var rng_pool;
var rng_pptr;

// mix in a 32-bit integer into the pool
function rng_seed_int(x) {
rng_pool[rng_pptr++] ^= x & 255;
rng_pool[rng_pptr++] ^= (x >> 8) & 255;
rng_pool[rng_pptr++] ^= (x >> 16) & 255;
rng_pool[rng_pptr++] ^= (x >> 24) & 255;
if (rng_pptr >= rng_psize) rng_pptr -= rng_psize;
}

// mix in the current time (w/milliseconds) into the pool
function rng_seed_time() {
rng_seed_int(new date().gettime());
}

// initialize the pool with junk if needed.
if (rng_pool == null) {
rng_pool = new array();
rng_pptr = 0;
var t;
if (navigator.appname == "netscape" && navigator.appversion < "5" && window.crypto) {
    // extract entropy (256 bits) from ns4 rng if available
    var z = window.crypto.random(32);
    for (t = 0; t < z.length; ++t) rng_pool[rng_pptr++] = z.charcodeat(t) & 255;
}
while (rng_pptr < rng_psize) { // extract some randomness from math.random()
    t = math.floor(65536 * math.random());
    rng_pool[rng_pptr++] = t >>> 8;
    rng_pool[rng_pptr++] = t & 255;
}
rng_pptr = 0;
rng_seed_time();
//rng_seed_int(window.screenx);
//rng_seed_int(window.screeny);
}

function prng_newstate() {
return new arcfour();
}

function rng_get_byte() {
if (rng_state == null) {
    rng_seed_time();
    rng_state = prng_newstate();
    rng_state.init(rng_pool);
    for (rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr) rng_pool[rng_pptr] = 0;
    rng_pptr = 0;
    //rng_pool = null;
}
// todo: allow reseeding after first request
return rng_state.next();
}

function rng_get_bytes(ba) {
var i;
for (i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
}

function securerandom() {}

securerandom.prototype.nextbytes = rng_get_bytes;

// copyright (c) 2005  tom wu
// all rights reserved.
// see "license" for details.
// basic javascript bn library - subset useful for rsa encryption.
// bits per digit
var dbits;

// javascript engine analysis
var canary = 0xdeadbeefcafe;
var j_lm = ((canary & 0xffffff) == 0xefcafe);

// (public) constructor
function biginteger(a, b, c) {
if (a != null) if ("number" == typeof a) this.fromnumber(a, b, c);
else if (b == null && "string" != typeof a) this.fromstring(a, 256);
else this.fromstring(a, b);
}

// return new, unset biginteger
function nbi() {
return new biginteger(null);
}

// am: compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// we need to select the fastest one that works in this environment.
// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i, x, w, j, c, n) {
while (--n >= 0) {
    var v = x * this[i++] + w[j] + c;
    c = math.floor(v / 0x4000000);
    w[j++] = v & 0x3ffffff;
}
return c;
}
// am2 avoids a big mult-and-extract completely.
// max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i, x, w, j, c, n) {
var xl = x & 0x7fff,
xh = x >> 15;
while (--n >= 0) {
    var l = this[i] & 0x7fff;
    var h = this[i++] >> 15;
    var m = xh * l + h * xl;
    l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff);
    c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30);
    w[j++] = l & 0x3fffffff;
}
return c;
}
// alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i, x, w, j, c, n) {
var xl = x & 0x3fff,
xh = x >> 14;
while (--n >= 0) {
    var l = this[i] & 0x3fff;
    var h = this[i++] >> 14;
    var m = xh * l + h * xl;
    l = xl * l + ((m & 0x3fff) << 14) + w[j] + c;
    c = (l >> 28) + (m >> 14) + xh * h;
    w[j++] = l & 0xfffffff;
}
return c;
}
if (j_lm && (navigator.appname == "microsoft internet explorer")) {
biginteger.prototype.am = am2;
dbits = 30;
} else if (j_lm && (navigator.appname != "netscape")) {
biginteger.prototype.am = am1;
dbits = 26;
} else { // mozilla/netscape seems to prefer am3
biginteger.prototype.am = am3;
dbits = 28;
}

biginteger.prototype.db = dbits;
biginteger.prototype.dm = ((1 << dbits) - 1);
biginteger.prototype.dv = (1 << dbits);

var bi_fp = 52;
biginteger.prototype.fv = math.pow(2, bi_fp);
biginteger.prototype.f1 = bi_fp - dbits;
biginteger.prototype.f2 = 2 * dbits - bi_fp;

// digit conversions
var bi_rm = "0123456789abcdefghijklmnopqrstuvwxyz";
var bi_rc = new array();
var rr, vv;
rr = "0".charcodeat(0);
for (vv = 0; vv <= 9; ++vv) bi_rc[rr++] = vv;
rr = "a".charcodeat(0);
for (vv = 10; vv < 36; ++vv) bi_rc[rr++] = vv;
rr = "a".charcodeat(0);
for (vv = 10; vv < 36; ++vv) bi_rc[rr++] = vv;

function int2char(n) {
return bi_rm.charat(n);
}
function intat(s, i) {
var c = bi_rc[s.charcodeat(i)];
return (c == null) ? -1 : c;
}

// (protected) copy this to r
function bnpcopyto(r) {
for (var i = this.t - 1; i >= 0; --i) r[i] = this[i];
r.t = this.t;
r.s = this.s;
}

// (protected) set from integer value x, -dv <= x < dv
function bnpfromint(x) {
this.t = 1;
this.s = (x < 0) ? -1 : 0;
if (x > 0) this[0] = x;
else if (x < -1) this[0] = x + dv;
else this.t = 0;
}

// return bigint initialized to value
function nbv(i) {
var r = nbi();
r.fromint(i);
return r;
}

// (protected) set from string and radix
function bnpfromstring(s, b) {
var k;
if (b == 16) k = 4;
else if (b == 8) k = 3;
else if (b == 256) k = 8; // byte array
else if (b == 2) k = 1;
else if (b == 32) k = 5;
else if (b == 4) k = 2;
else {
    this.fromradix(s, b);
    return;
}
this.t = 0;
this.s = 0;
var i = s.length,
mi = false,
sh = 0;
while (--i >= 0) {
    var x = (k == 8) ? s[i] & 0xff: intat(s, i);
    if (x < 0) {
        if (s.charat(i) == "-") mi = true;
        continue;
    }
    mi = false;
    if (sh == 0) this[this.t++] = x;
    else if (sh + k > this.db) {
        this[this.t - 1] |= (x & ((1 << (this.db - sh)) - 1)) << sh;
        this[this.t++] = (x >> (this.db - sh));
    } else this[this.t - 1] |= x << sh;
    sh += k;
    if (sh >= this.db) sh -= this.db;
}
if (k == 8 && (s[0] & 0x80) != 0) {
    this.s = -1;
    if (sh > 0) this[this.t - 1] |= ((1 << (this.db - sh)) - 1) << sh;
}
this.clamp();
if (mi) biginteger.zero.subto(this, this);
}

// (protected) clamp off excess high words
function bnpclamp() {
var c = this.s & this.dm;
while (this.t > 0 && this[this.t - 1] == c)--this.t;
}

// (public) return string representation in given radix
function bntostring(b) {
if (this.s < 0) return "-" + this.negate().tostring(b);
var k;
if (b == 16) k = 4;
else if (b == 8) k = 3;
else if (b == 2) k = 1;
else if (b == 32) k = 5;
else if (b == 4) k = 2;
else return this.toradix(b);
var km = (1 << k) - 1,
d,
m = false,
r = "",
i = this.t;
var p = this.db - (i * this.db) % k;
if (i-->0) {
    if (p < this.db && (d = this[i] >> p) > 0) {
        m = true;
        r = int2char(d);
    }
    while (i >= 0) {
        if (p < k) {
            d = (this[i] & ((1 << p) - 1)) << (k - p);
            d |= this[--i] >> (p += this.db - k);
        } else {
            d = (this[i] >> (p -= k)) & km;
            if (p <= 0) {
                p += this.db; --i;
            }
        }
        if (d > 0) m = true;
        if (m) r += int2char(d);
    }
}
return m ? r: "0";
}

// (public) -this
function bnnegate() {
var r = nbi();
biginteger.zero.subto(this, r);
return r;
}

// (public) |this|
function bnabs() {
return (this.s < 0) ? this.negate() : this;
}

// (public) return + if this > a, - if this < a, 0 if equal
function bncompareto(a) {
var r = this.s - a.s;
if (r != 0) return r;
var i = this.t;
r = i - a.t;
if (r != 0) return r;
while (--i >= 0) if ((r = this[i] - a[i]) != 0) return r;
return 0;
}

// returns bit length of the integer x
function nbits(x) {
var r = 1,
t;
if ((t = x >>> 16) != 0) {
    x = t;
    r += 16;
}
if ((t = x >> 8) != 0) {
    x = t;
    r += 8;
}
if ((t = x >> 4) != 0) {
    x = t;
    r += 4;
}
if ((t = x >> 2) != 0) {
    x = t;
    r += 2;
}
if ((t = x >> 1) != 0) {
    x = t;
    r += 1;
}
return r;
}

// (public) return the number of bits in "this"
function bnbitlength() {
if (this.t <= 0) return 0;
return this.db * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.dm));
}

// (protected) r = this << n*db
function bnpdlshiftto(n, r) {
var i;
for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i];
for (i = n - 1; i >= 0; --i) r[i] = 0;
r.t = this.t + n;
r.s = this.s;
}

// (protected) r = this >> n*db
function bnpdrshiftto(n, r) {
for (var i = n; i < this.t; ++i) r[i - n] = this[i];
r.t = math.max(this.t - n, 0);
r.s = this.s;
}

// (protected) r = this << n
function bnplshiftto(n, r) {
var bs = n % this.db;
var cbs = this.db - bs;
var bm = (1 << cbs) - 1;
var ds = math.floor(n / this.db),
c = (this.s << bs) & this.dm,
i;
for (i = this.t - 1; i >= 0; --i) {
    r[i + ds + 1] = (this[i] >> cbs) | c;
    c = (this[i] & bm) << bs;
}
for (i = ds - 1; i >= 0; --i) r[i] = 0;
r[ds] = c;
r.t = this.t + ds + 1;
r.s = this.s;
r.clamp();
}

// (protected) r = this >> n
function bnprshiftto(n, r) {
r.s = this.s;
var ds = math.floor(n / this.db);
if (ds >= this.t) {
    r.t = 0;
    return;
}
var bs = n % this.db;
var cbs = this.db - bs;
var bm = (1 << bs) - 1;
r[0] = this[ds] >> bs;
for (var i = ds + 1; i < this.t; ++i) {
    r[i - ds - 1] |= (this[i] & bm) << cbs;
    r[i - ds] = this[i] >> bs;
}
if (bs > 0) r[this.t - ds - 1] |= (this.s & bm) << cbs;
r.t = this.t - ds;
r.clamp();
}

// (protected) r = this - a
function bnpsubto(a, r) {
var i = 0,
c = 0,
m = math.min(a.t, this.t);
while (i < m) {
    c += this[i] - a[i];
    r[i++] = c & this.dm;
    c >>= this.db;
}
if (a.t < this.t) {
    c -= a.s;
    while (i < this.t) {
        c += this[i];
        r[i++] = c & this.dm;
        c >>= this.db;
    }
    c += this.s;
} else {
    c += this.s;
    while (i < a.t) {
        c -= a[i];
        r[i++] = c & this.dm;
        c >>= this.db;
    }
    c -= a.s;
}
r.s = (c < 0) ? -1 : 0;
if (c < -1) r[i++] = this.dv + c;
else if (c > 0) r[i++] = c;
r.t = i;
r.clamp();
}

// (protected) r = this * a, r != this,a (hac 14.12)
// "this" should be the larger one if appropriate.
function bnpmultiplyto(a, r) {
var x = this.abs(),
y = a.abs();
var i = x.t;
r.t = i + y.t;
while (--i >= 0) r[i] = 0;
for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t);
r.s = 0;
r.clamp();
if (this.s != a.s) biginteger.zero.subto(r, r);
}

// (protected) r = this^2, r != this (hac 14.16)
function bnpsquareto(r) {
var x = this.abs();
var i = r.t = 2 * x.t;
while (--i >= 0) r[i] = 0;
for (i = 0; i < x.t - 1; ++i) {
    var c = x.am(i, x[i], r, 2 * i, 0, 1);
    if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.dv) {
        r[i + x.t] -= x.dv;
        r[i + x.t + 1] = 1;
    }
}
if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1);
r.s = 0;
r.clamp();
}

// (protected) divide this by m, quotient and remainder to q, r (hac 14.20)
// r != q, this != m.  q or r may be null.
function bnpdivremto(m, q, r) {
var pm = m.abs();
if (pm.t <= 0) return;
var pt = this.abs();
if (pt.t < pm.t) {
    if (q != null) q.fromint(0);
    if (r != null) this.copyto(r);
    return;
}
if (r == null) r = nbi();
var y = nbi(),
ts = this.s,
ms = m.s;
var nsh = this.db - nbits(pm[pm.t - 1]); // normalize modulus
if (nsh > 0) {
    pm.lshiftto(nsh, y);
    pt.lshiftto(nsh, r);
} else {
    pm.copyto(y);
    pt.copyto(r);
}
var ys = y.t;
var y0 = y[ys - 1];
if (y0 == 0) return;
var yt = y0 * (1 << this.f1) + ((ys > 1) ? y[ys - 2] >> this.f2: 0);
var d1 = this.fv / yt,
d2 = (1 << this.f1) / yt,
e = 1 << this.f2;
var i = r.t,
j = i - ys,
t = (q == null) ? nbi() : q;
y.dlshiftto(j, t);
if (r.compareto(t) >= 0) {
    r[r.t++] = 1;
    r.subto(t, r);
}
biginteger.one.dlshiftto(ys, t);
t.subto(y, y); // "negative" y so we can replace sub with am later
while (y.t < ys) y[y.t++] = 0;
while (--j >= 0) {
    // estimate quotient digit
    var qd = (r[--i] == y0) ? this.dm: math.floor(r[i] * d1 + (r[i - 1] + e) * d2);
    if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // try it out
        y.dlshiftto(j, t);
        r.subto(t, r);
        while (r[i] < --qd) r.subto(t, r);
    }
}
if (q != null) {
    r.drshiftto(ys, q);
    if (ts != ms) biginteger.zero.subto(q, q);
}
r.t = ys;
r.clamp();
if (nsh > 0) r.rshiftto(nsh, r); // denormalize remainder
if (ts < 0) biginteger.zero.subto(r, r);
}

// (public) this mod a
function bnmod(a) {
var r = nbi();
this.abs().divremto(a, null, r);
if (this.s < 0 && r.compareto(biginteger.zero) > 0) a.subto(r, r);
return r;
}

// modular reduction using "classic" algorithm
function classic(m) {
this.m = m;
}
function cconvert(x) {
if (x.s < 0 || x.compareto(this.m) >= 0) return x.mod(this.m);
else return x;
}
function crevert(x) {
return x;
}
function creduce(x) {
x.divremto(this.m, null, x);
}
function cmulto(x, y, r) {
x.multiplyto(y, r);
this.reduce(r);
}
function csqrto(x, r) {
x.squareto(r);
this.reduce(r);
}

classic.prototype.convert = cconvert;
classic.prototype.revert = crevert;
classic.prototype.reduce = creduce;
classic.prototype.multo = cmulto;
classic.prototype.sqrto = csqrto;

// (protected) return "-1/this % 2^db"; useful for mont. reduction
// justification:
//         xy == 1 (mod m)
//         xy =  1+km
//   xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// js multiply "overflows" differently from c/c++, so care is needed here.
function bnpinvdigit() {
if (this.t < 1) return 0;
var x = this[0];
if ((x & 1) == 0) return 0;
var y = x & 3; // y == 1/x mod 2^2
y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4
y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8
y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod dv directly;
// assumes 16 < db <= 32 and assumes ability to handle 48-bit ints
y = (y * (2 - x * y % this.dv)) % this.dv; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -dv < y < dv
return (y > 0) ? this.dv - y: -y;
}

// montgomery reduction
function montgomery(m) {
this.m = m;
this.mp = m.invdigit();
this.mpl = this.mp & 0x7fff;
this.mph = this.mp >> 15;
this.um = (1 << (m.db - 15)) - 1;
this.mt2 = 2 * m.t;
}

// xr mod m
function montconvert(x) {
var r = nbi();
x.abs().dlshiftto(this.m.t, r);
r.divremto(this.m, null, r);
if (x.s < 0 && r.compareto(biginteger.zero) > 0) this.m.subto(r, r);
return r;
}

// x/r mod m
function montrevert(x) {
var r = nbi();
x.copyto(r);
this.reduce(r);
return r;
}

// x = x/r mod m (hac 14.32)
function montreduce(x) {
while (x.t <= this.mt2) // pad x so am has enough room later
x[x.t++] = 0;
for (var i = 0; i < this.m.t; ++i) {
    // faster way of calculating u0 = x[i]*mp mod dv
    var j = x[i] & 0x7fff;
    var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.dm;
    // use am to combine the multiply-shift-add into one call
    j = i + this.m.t;
    x[j] += this.m.am(0, u0, x, i, 0, this.m.t);
    // propagate carry
    while (x[j] >= x.dv) {
        x[j] -= x.dv;
        x[++j]++;
    }
}
x.clamp();
x.drshiftto(this.m.t, x);
if (x.compareto(this.m) >= 0) x.subto(this.m, x);
}

// r = "x^2/r mod m"; x != r
function montsqrto(x, r) {
x.squareto(r);
this.reduce(r);
}

// r = "xy/r mod m"; x,y != r
function montmulto(x, y, r) {
x.multiplyto(y, r);
this.reduce(r);
}

montgomery.prototype.convert = montconvert;
montgomery.prototype.revert = montrevert;
montgomery.prototype.reduce = montreduce;
montgomery.prototype.multo = montmulto;
montgomery.prototype.sqrto = montsqrto;

// (protected) true iff this is even
function bnpiseven() {
return ((this.t > 0) ? (this[0] & 1) : this.s) == 0;
}

// (protected) this^e, e < 2^32, doing sqr and mul with "r" (hac 14.79)
function bnpexp(e, z) {
if (e > 0xffffffff || e < 1) return biginteger.one;
var r = nbi(),
r2 = nbi(),
g = z.convert(this),
i = nbits(e) - 1;
g.copyto(r);
while (--i >= 0) {
    z.sqrto(r, r2);
    if ((e & (1 << i)) > 0) z.multo(r2, g, r);
    else {
        var t = r;
        r = r2;
        r2 = t;
    }
}
return z.revert(r);
}

// (public) this^e % m, 0 <= e < 2^32
function bnmodpowint(e, m) {
var z;
if (e < 256 || m.iseven()) z = new classic(m);
else z = new montgomery(m);
return this.exp(e, z);
}

// protected
biginteger.prototype.copyto = bnpcopyto;
biginteger.prototype.fromint = bnpfromint;
biginteger.prototype.fromstring = bnpfromstring;
biginteger.prototype.clamp = bnpclamp;
biginteger.prototype.dlshiftto = bnpdlshiftto;
biginteger.prototype.drshiftto = bnpdrshiftto;
biginteger.prototype.lshiftto = bnplshiftto;
biginteger.prototype.rshiftto = bnprshiftto;
biginteger.prototype.subto = bnpsubto;
biginteger.prototype.multiplyto = bnpmultiplyto;
biginteger.prototype.squareto = bnpsquareto;
biginteger.prototype.divremto = bnpdivremto;
biginteger.prototype.invdigit = bnpinvdigit;
biginteger.prototype.iseven = bnpiseven;
biginteger.prototype.exp = bnpexp;

// public
biginteger.prototype.tostring = bntostring;
biginteger.prototype.negate = bnnegate;
biginteger.prototype.abs = bnabs;
biginteger.prototype.compareto = bncompareto;
biginteger.prototype.bitlength = bnbitlength;
biginteger.prototype.mod = bnmod;
biginteger.prototype.modpowint = bnmodpowint;

// "constants"
biginteger.zero = nbv(0);
biginteger.one = nbv(1);

var public_key = "b0aafa4c9d388208e9f55b14df04c8603d0cd81b7b65bbd669fa893096c985e33682fe7deee6500e1c4c6722c9855b6dd2e130f3672beba446b72d8dfff2dd1f4e23d6bd728e267a9dc2c544c6680712884926d67af74b74e5ad8298034d8c16fe8e5a37706ef5e447e423e69ca7fd3e47bbf7a9b137ef9b0310e2560e13d3c1";
// depends on jsbn.js and rng.js
// version 1.1: support utf-8 encoding in pkcs1pad2
// convert a (hex) string to a bignum object
function parsebigint(str, r) {
return new biginteger(str, r);
}

function linebrk(s, n) {
var ret = "";
var i = 0;
while (i + n < s.length) {
    ret += s.substring(i, i + n) + "\n";
    i += n;
}
return ret + s.substring(i, s.length);
}

function byte2hex(b) {
if (b < 0x10) return "0" + b.tostring(16);
else return b.tostring(16);
}

// pkcs#1 (type 2, random) pad input string s to n bytes, and return a bigint
function pkcs1pad2(s, n) {
if (n < s.length + 11) { // todo: fix for utf-8
    alert("message too long for rsa");
    return null;
}
var ba = new array();
var i = s.length - 1;
while (i >= 0 && n > 0) {
    var c = s.charcodeat(i--);
    if (c < 128) { // encode using utf-8
        ba[--n] = c;
    } else if ((c > 127) && (c < 2048)) {
        ba[--n] = (c & 63) | 128;
        ba[--n] = (c >> 6) | 192;
    } else {
        ba[--n] = (c & 63) | 128;
        ba[--n] = ((c >> 6) & 63) | 128;
        ba[--n] = (c >> 12) | 224;
    }
}
ba[--n] = 0;
var rng = new securerandom();
var x = new array();
while (n > 2) { // random non-zero pad
    x[0] = 0;
    while (x[0] == 0) rng.nextbytes(x);
    ba[--n] = x[0];
}
ba[--n] = 2;
ba[--n] = 0;
return new biginteger(ba);
}

// "empty" rsa key constructor
function rsakey() {
this.n = null;
this.e = 0;
this.d = null;
this.p = null;
this.q = null;
this.dmp1 = null;
this.dmq1 = null;
this.coeff = null;
}

// set the public key fields n and e from hex strings
function rsasetpublic(n, e) {
if (n != null && e != null && n.length > 0 && e.length > 0) {
    this.n = parsebigint(n, 16);
    this.e = parseint(e, 16);
} else alert("invalid rsa public key");
}

// perform raw public operation on "x": return x^e (mod n)
function rsadopublic(x) {
return x.modpowint(this.e, this.n);
}

// return the pkcs#1 rsa encryption of "text" as an even-length hex string
function rsaencrypt(text) {
var m = pkcs1pad2(text, (this.n.bitlength() + 7) >> 3);
if (m == null) return null;
var c = this.dopublic(m);
if (c == null) return null;
var h = c.tostring(16);
if ((h.length & 1) == 0) return h;
else return "0" + h;
}

// return the pkcs#1 rsa encryption of "text" as a base64-encoded string
//function rsaencryptb64(text) {
//  var h = this.encrypt(text);
//  if(h) return hex2b64(h); else return null;
//}
// protected
rsakey.prototype.dopublic = rsadopublic;

// public
rsakey.prototype.setpublic = rsasetpublic;
rsakey.prototype.encrypt = rsaencrypt;
//rsakey.prototype.encrypt_b64 = rsaencryptb64;
var public_length = "10001";
function rsa_encrypt(str) {
var block_size = public_key.length / 2 - 11;
var ret = '';
while (str.length > 0) {
    var i = block_size;
    if (str.length < i) i = str.length;
    str_1 = str.substr(0, i);
    str = str.substr(i, str.length - i);
    ret += rsa_encrypt1(str_1) + ' ';
}
return (ret);
}
function rsa_encrypt1(str) {
var rsa = new rsakey();
rsa.setpublic(public_key, public_length);
var res = rsa.encrypt(str);
res = hex2b64(res);
return (res);
}

function getjsondata_rsa(data) {
return rsa_encrypt(data);
}

4. 最后传进去的参数需要是自己拼接的json,参数有username, pwd, code(验证码), vvccookie(页面中可拿到),拼接好键值对传入最后的js函数即可。