欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

第7章 YARN HA配置

程序员文章站 2023-03-25 19:08:06
[TOC] ResourceManager (RM)负责跟踪集群中的资源,以及调度应用程序(例如,MapReduce作业)。在Hadoop 2.4之前,集群中只有一个ResourceManager,当其中一个宕机时,将影响整个集群。高可用性特性增加了冗余的形式,即一个主动/备用的ResourceMa ......

目录

ResourceManager (RM)负责跟踪集群中的资源,以及调度应用程序(例如,MapReduce作业)。在Hadoop 2.4之前,集群中只有一个ResourceManager,当其中一个宕机时,将影响整个集群。高可用性特性增加了冗余的形式,即一个主动/备用的ResourceManager对,以便可以进行故障转移。

YARN HA的架构如下图所示:
第7章  YARN HA配置
本例中,各节点的角色分配如下表所示:

节点 角色
centos01 ResourceManager NodeManager
centos02 ResourceManager NodeManager
centos03 NodeManager

下面将逐步讲解YARN HA的配置步骤。

7.1 yarn-site.xm文件配置

(1)修改yarn-site.xm文件,加入以下内容:

   <!--YARN HA配置-->
    <property>
      <name>yarn.resourcemanager.ha.enabled</name>
      <value>true</value>
    </property>
    <property>
      <name>yarn.resourcemanager.cluster-id</name>
      <value>cluster1</value>
    </property>
    <property>
      <name>yarn.resourcemanager.ha.rm-ids</name>
      <value>rm1,rm2</value>
    </property>
    <property>
      <name>yarn.resourcemanager.hostname.rm1</name>
      <value>centos01</value>
    </property>
    <property>
      <name>yarn.resourcemanager.hostname.rm2</name>
      <value>centos02</value>
    </property>
    <property>
      <name>yarn.resourcemanager.webapp.address.rm1</name>
      <value>centos01:8088</value>
    </property>
    <property>
      <name>yarn.resourcemanager.webapp.address.rm2</name>
      <value>centos02:8088</value>
    </property>
    <property>
      <name>yarn.resourcemanager.zk-address</name>
      <value>centos01:2181,centos02:2181,centos03:2181</value>
    </property>     
    <property><!--启用RM重启的功能,默认为false-->
      <name>yarn.resourcemanager.recovery.enabled</name>
      <value>true</value>
    </property> 
    <property>
      <name>yarn.resourcemanager.store.class</name>
      <value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
    </property>

上述配置参数解析:
yarn.resourcemanager.ha.enabled:开启RM HA功能。
yarn.resourcemanager.cluster-id:标识集群中的RM。如果设置该选项,需要确保所有的RMs在配置中都有自己的id。
yarn.resourcemanager.ha.rm-ids:RMs的逻辑id列表。可以自定义,此处设置为“rm1,rm2”。后面的配置将引用该id。
yarn.resourcemanager.hostname.rm1:指定RM对应的主机名。另外,可以设置RM的每个服务地址。
yarn.resourcemanager.webapp.address.rm1:指定RM的Web端访问地址。
yarn.resourcemanager.zk-address:指定集成的ZooKeeper的服务地址。
yarn.resourcemanager.recovery.enabled:启用RM重启的功能,默认为false。
yarn.resourcemanager.store.class:用于状态存储的类,默认为org.apache.hadoop.yarn.server.resourcemanager.recovery.FileSystemRMStateStore,基于Hadoop文件系统的实现。还可以为org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore,该类为基于ZooKeeper的实现。此处指定该类。

(2)yarn-site.xm文件配置好后,需要将其发送到集群中其它节点。
(3)接着上一章启动好的HDFS,继续进行启动YARN。
分别在centos01、centos02节点上执行以下命令,启动ResourceManager:

[hadoop@centos01 hadoop-2.7.1]$ sbin/yarn-daemon.sh start resourcemanager

分别在centos01、centos02、centos03节点上执行以下命令,启动nodemanager:

[hadoop@centos01 hadoop-2.7.1]$ sbin/yarn-daemon.sh start nodemanager

(4)YARN启动后,查看各节点Java进程:

[hadoop@centos01 hadoop-2.7.1]$ jps
3360 QuorumPeerMain
4080 DFSZKFailoverController
4321 NodeManager
4834 Jps
3908 JournalNode
3702 DataNode
4541 ResourceManager
3582 NameNode

[hadoop@centos02 hadoop-2.7.1]$ jps
4486 Jps
3815 DFSZKFailoverController
4071 NodeManager
4359 ResourceManager
3480 NameNode
3353 QuorumPeerMain
3657 JournalNode
3563 DataNode

[hadoop@centos03 hadoop-2.7.1]$ jps
3496 JournalNode
4104 Jps
3836 NodeManager
3293 QuorumPeerMain
3390 DataNode

此时浏览器输入地址http://centos01:8088 访问活动状态的ResourceManager,查看YARN的启动状态。如下图所示。
第7章  YARN HA配置
如果访问备份ResourceManager地址:http://centos02:8088 发现自动跳转到了地址http://centos01:8088。这是因为此时活动状态的ResourceManager在centos01节点上。访问备份节点的ResourceManager会自动跳转到活动节点。

7.2 测试YARN自动故障转移

在centos01节点上执行MapReduce默认的WordCount程序,当正在执行map阶段时,新开一个SSH Shell窗口,杀掉centos01的ResourceManager进程,观察程序执行过程。执行MapReduce默认的WordCount程序的命令如下:

[hadoop@centos01 hadoop-2.7.1]$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar wordcount /input /output

执行结果如下:

[hadoop@centos01 hadoop-2.7.1]$ bin/yarn jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.1.jar wordcount /input /output
18/03/16 10:48:22 INFO input.FileInputFormat: Total input paths to process : 1
18/03/16 10:48:22 INFO mapreduce.JobSubmitter: number of splits:1
18/03/16 10:48:23 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1521168402181_0001
18/03/16 10:48:23 INFO impl.YarnClientImpl: Submitted application application_1521168402181_0001
18/03/16 10:48:23 INFO mapreduce.Job: The url to track the job: http://centos01:8088/proxy/application_1521168402181_0001/
18/03/16 10:48:23 INFO mapreduce.Job: Running job: job_1521168402181_0001
18/03/16 10:48:56 INFO mapreduce.Job: Job job_1521168402181_0001 running in uber mode : false
18/03/16 10:48:57 INFO mapreduce.Job:  map 0% reduce 0%
18/03/16 10:50:21 INFO mapreduce.Job:  map 100% reduce 0%
18/03/16 10:50:32 INFO mapreduce.Job:  map 100% reduce 100%
18/03/16 10:50:36 INFO mapreduce.Job: Job job_1521168402181_0001 completed successfully
18/03/16 10:50:37 INFO mapreduce.Job: Counters: 49
        File System Counters
                FILE: Number of bytes read=1321
                FILE: Number of bytes written=239335
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=1094
                HDFS: Number of bytes written=971
                HDFS: Number of read operations=6
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=2
        Job Counters 
                Launched map tasks=1
                Launched reduce tasks=1
                Data-local map tasks=1
                Total time spent by all maps in occupied slots (ms)=14130
                Total time spent by all reduces in occupied slots (ms)=7851
                Total time spent by all map tasks (ms)=14130
                Total time spent by all reduce tasks (ms)=7851
                Total vcore-seconds taken by all map tasks=14130
                Total vcore-seconds taken by all reduce tasks=7851
                Total megabyte-seconds taken by all map tasks=14469120
                Total megabyte-seconds taken by all reduce tasks=8039424
        Map-Reduce Framework
                Map input records=29
                Map output records=109
                Map output bytes=1368
                Map output materialized bytes=1321
                Input split bytes=101
                Combine input records=109
                Combine output records=86
                Reduce input groups=86
                Reduce shuffle bytes=1321
                Reduce input records=86
                Reduce output records=86
                Spilled Records=172
                Shuffled Maps =1
                Failed Shuffles=0
                Merged Map outputs=1
                GC time elapsed (ms)=188
                CPU time spent (ms)=1560
                Physical memory (bytes) snapshot=278478848
                Virtual memory (bytes) snapshot=4195344384
                Total committed heap usage (bytes)=140480512
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
        File Input Format Counters 
                Bytes Read=993
        File Output Format Counters 
                Bytes Written=971

从上述结果中可以看出,虽然ResourceManager进程被杀掉了,但是YARN仍然能够流畅的执行,说明自动故障转移功能生效了,ResourceManager遇到故障后,自动切换到了centos02节点上继续执行。此时浏览器访问备用ResourceManager的Web端地址http://centos02:8088发现可以成功访问了。显示任务成功执行完毕。
第7章  YARN HA配置
到此,YARN HA集群搭建完毕。

原创文章,转载请注明出处!!