欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

从新冠疫情出发,漫谈 Gossip 协议

程序员文章站 2022-03-15 18:15:20
...

从新冠疫情出发,漫谈 Gossip 协议

众所周知周知,疫情仍然在全球各地肆虐。据最新数据统计,截至北京时间 2020-05-28,全球累计确诊 5698703 例,累计死亡 352282 例,累计治愈 2415237 例。

从上面的统计数据,我们可以看出,新冠病毒在人与人之间的传播是极其高效的,且影响范围广。如果我们把「新冠病毒」想象成一小段数据,将「人与人之间传播」想象成数据交换,那么,我们可以得出结论,在不考虑免疫系统和人为干预等一些因素,经过反复迭代,数据(新冠病毒)可以被发送(感染)到每个节点(人)上。

这个就是今天要介绍的 Gossip 协议,该协议早在 1987 年就被发表在 ACM 上的论文《Epidemic Algorithms for Replicated Database Maintenance》中。当时主要用在分布式数据库系统中各个副本节点间同步数据。

从新冠疫情出发,漫谈 Gossip 协议

Gossip 协议简介

Gossip 协议分为 Push-based 和 Pull-based 两种模式,具体工作流程如下:

Push-based 的 Gossip 协议:

  • 网络中的某个节点随机选择N个节点作为数据接收对象

  • 该节点向其选中的N个节点传输相应数据

  • 接收到数据的节点对数据进行存储

  • 接收到数据的节点再从第一步开始周期性执行

从新冠疫情出发,漫谈 Gossip 协议

Pull-based 的 Gossip 协议,正好相反:

  • 集群内的所有节点,随机选择其它 k 个节点询问有没有新数据

  • 接收到请求的节点,返回新数据

从新冠疫情出发,漫谈 Gossip 协议

如何实现 Gossip

这边简单分析下 HashiCorp 公司的 Serf 的核心库 Memberlist。这家公司研发了 Consul(基于 raft 实现的分布式存储)、Vagrant(声明式虚拟机编排)等优秀的产品。最近由于中美矛盾升级,也陷入到了舆论的漩涡中,爆出禁止在中国使用他们的产品的传闻。不过,这是题外话。

Memberlist 这个 Golang 的代码库,基于 Gossip 协议,实现了集群内节点发现、 节点失效探测、节点故障转移、节点状态同步等。

其核心实现的大致如下:

  • newMemberlist():初始化 Memberlist 对象,根据配置监听 TCP/UDP 端口,用于之后通信。这边需要注意一点,虽然是基于 Gossip 协议实现的,但是并不是所有信息都采用 Gossip 进行数据交换。比如节点加入集群的时候,为了尽快的让集群内所有节点感知到,采用遍历当前已知的所有节点并通过 TCP 连接发送并接收数据的方式,来确保跟所有节点完成数据交换。

  • gossip():Memberlist 对象启动之后,会定期使用 Gossip 协议,随机选择集群内的节点,采用 UDP 传输方式发送当前节点状态以及用户自定义的数据。

  • pushPull():还会定期随机选择一个节点,通过 TCP 传输方式与其做全量数据交换,加速集群内数据一致性收敛。

  • probe():还会定期轮训集群内的一个节点,通过 UDP 方式发送心跳探测包,做到节点感知。

深入 Gossip 核心代码

发送端处理流程:

  • 周期性地随机选择 m.config.GossipNodes 个节点,然后广播正在等待发送的信息

// Create a gossip ticker if needed
if m.config.GossipInterval > 0 && m.config.GossipNodes > 0 {
t := time.NewTicker(m.config.GossipInterval)
go m.triggerFunc(m.config.GossipInterval, t.C, stopCh, m.gossip)
m.tickers = append(m.tickers, t)
}

// gossip is invoked every GossipInterval period to broadcast our gossip
// messages to a few random nodes.
func (m *Memberlist) gossip() {
defer metrics.MeasureSince([]string{“memberlist”, “gossip”}, time.Now())

// Get some random live, suspect, or recently dead nodes
m.nodeLock.RLock()
kNodes := kRandomNodes(m.config.GossipNodes, m.nodes, func(n *nodeState) bool {
    if n.Name == m.config.Name {
        return true
    }
    switch n.State {
    case StateAlive, StateSuspect:
        return false
    case StateDead:
        return time.Since(n.StateChange) > m.config.GossipToTheDeadTime
    default:
        return true
    }
})
m.nodeLock.RUnlock()

// ...

for _, node := range kNodes {
    // Get any pending broadcasts
    msgs := m.getBroadcasts(compoundOverhead, bytesAvail)
    if len(msgs) == 0 {
        return
    }

    addr := node.Address()
    if len(msgs) == 1 {
        // Send single message as is
        if err := m.rawSendMsgPacket(node.FullAddress(), &node.Node, msgs[0]); err != nil {
            m.logger.Printf("[ERR] memberlist: Failed to send gossip to %s: %s", addr, err)
        }
    } else {
        // Otherwise create and send a compound message
        compound := makeCompoundMessage(msgs)
        if err := m.rawSendMsgPacket(node.FullAddress(), &node.Node, compound.Bytes()); err != nil {
            m.logger.Printf("[ERR] memberlist: Failed to send gossip to %s: %s", addr, err)
        }
    }
}

}
接收端:

  • 接收数据报文,然后解析报文信息,并将信息记录下来

// packetListen is a long running goroutine that pulls packets out of the
// transport and hands them off for processing.
func (m *Memberlist) packetListen() {
for {
select {
case packet := <-m.transport.PacketCh():
m.ingestPacket(packet.Buf, packet.From, packet.Timestamp)

    case <-m.shutdownCh:
        return
    }
}

}

func (m *Memberlist) ingestPacket(buf []byte, from net.Addr, timestamp time.Time) {
// …

// See if there's a checksum included to verify the contents of the message
if len(buf) >= 5 && messageType(buf[0]) == hasCrcMsg {
    crc := crc32.ChecksumIEEE(buf[5:])
    expected := binary.BigEndian.Uint32(buf[1:5])
    if crc != expected {
        m.logger.Printf("[WARN] memberlist: Got invalid checksum for UDP packet: %x, %x", crc, expected)
        return
    }
    m.handleCommand(buf[5:], from, timestamp)
} else {
    m.handleCommand(buf, from, timestamp)
}

}

Gossip 协议的优缺点

看了 Memberlist 的实现,难免会有这样的疑问,为什么要使用 Gossip 协议,直接在集群内广播不香么?接下来,我们可以通过 Gossip 协议的优缺点来分析,使用 Gossip 协议的意义。

优点:

  • 协议简单,实现起来很方便

  • 扩展性强,可以允许集群内节点任意增加或者减少,新增节点最终会与其他节点一致

  • 去中心化,节点之间是完全对等的

  • 最终一致性

缺点:

  • 数据同步延迟,因为只保证最终一致性,所以会出现某个时间点,部分节点数据不同步的情况

  • 传输数据冗余,相同数据在节点间会反复被传输

今天对 Gossip 的协议就简单介绍到这里,如果有同学对内容感兴趣,可以回复评论,我们私下多多探讨和交流。

参考资料

https://en.wikipedia.org/wiki/Gossip_protocol

https://github.com/hashicorp/serf

https://github.com/hashicorp/memberlist

https://zhuanlan.zhihu.com/p/41228196

https://www.jianshu.com/p/de7b026f4997

相关标签: 运维