欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

【python】matplotlib动态显示详解

程序员文章站 2023-01-22 07:56:31
1.matplotlib动态绘图 python在绘图的时候,需要开启 interactive mode。核心代码如下: plt.ion(); #开启intera...

1.matplotlib动态绘图

python在绘图的时候,需要开启 interactive mode。核心代码如下:

plt.ion(); #开启interactive mode 成功的关键函数
  fig = plt.figure(1);
  
  for i in range(100):
    filepath="e:/model/weights-improvement-" + str(i + 1) + ".hdf5";
    model.load_weights(filepath);
    #测试数据
    x_new = np.linspace(low, up, 1000);
    y_new = getfit(model,x_new);
    # 显示数据
    plt.clf();
    plt.plot(x,y); 
    plt.scatter(x_sample, y_sample);
    plt.plot(x_new,y_new);
    
    ffpath = "e:/imgs/" + str(i) + ".jpg";
    plt.savefig(ffpath);
 
    plt.pause(0.01)       # 暂停0.01秒
    
  ani = animation.funcanimation(plt.figure(2), update,range(100),init_func=init, interval=500);
  ani.save("e:/test.gif",writer='pillow');
  
  plt.ioff()         # 关闭交互模式

2.实例

已知下面采样自sin函数的数据:

  x y
1 0.093 -0.81
2 0.58 -0.45
3 1.04 -0.007
4 1.55 0.48
5 2.15 0.89
6 2.62 0.997
7 2.71 0.995
8 2.73 0.993
9 3.03 0.916
10 3.14 0.86
11 3.58 0.57
12 3.66 0.504
13 3.81 0.369
14 3.83 0.35
15 4.39 -0.199
16 4.44 -0.248
17 4.6 -0.399
18 5.39 -0.932
19 5.54 -0.975
20 5.76 -0.999

 通过一个简单的三层神经网络训练一个sin函数的拟合器,并可视化模型训练过程的拟合曲线。

【python】matplotlib动态显示详解

2.1 网络训练实现

主要做的事情是定义一个三层的神经网络,输入层节点数为1,隐藏层节点数为10,输出层节点数为1。

import math;
import random;
from matplotlib import pyplot as plt
from keras.models import sequential
from keras.layers.core import dense
from keras.optimizers import adam
import numpy as np
from keras.callbacks import modelcheckpoint
import os
 
 
#采样函数
def sample(low, up, num):
  data = [];
  for i in range(num):
    #采样
    tmp = random.uniform(low, up);
    data.append(tmp);
  data.sort();
  return data;
 
#sin函数
def func(x):
  y = [];
  for i in range(len(x)):
    tmp = math.sin(x[i] - math.pi/3);
    y.append(tmp);
  return y;
 
#获取模型拟合结果
def getfit(model,x):  
  y = [];
  for i in range(len(x)):
    tmp = model.predict([x[i]], 10);
    y.append(tmp[0][0]);
  return y;
 
#删除同一目录下的所有文件
def del_file(path):
  ls = os.listdir(path)
  for i in ls:
    c_path = os.path.join(path, i)
    if os.path.isdir(c_path):
      del_file(c_path)
    else:
      os.remove(c_path)
 
if __name__ == '__main__':  
  path = "e:/model/";
  del_file(path);
  
  low = 0;
  up = 2 * math.pi;
  x = np.linspace(low, up, 1000);
  y = func(x);
  
  # 数据采样
#   x_sample = sample(low,up,20);
  x_sample = [0.09326442022999694, 0.5812590520508311, 1.040490143783586, 1.5504427746047338, 2.1589557183817036, 2.6235357787018407, 2.712578091093361, 2.7379109336528167, 3.0339662651841186, 3.147676812083248, 3.58596337171837, 3.6621496731124314, 3.81130899864203, 3.833092859928872, 4.396611340802901, 4.4481080339256875, 4.609657879057151, 5.399731063412583, 5.54299720786794, 5.764084730699906];
  y_sample = func(x_sample);
  
  # callback
  filepath="e:/model/weights-improvement-{epoch:00d}.hdf5";
  checkpoint= modelcheckpoint(filepath, verbose=1, save_best_only=false, mode='max');
  callbacks_list= [checkpoint];
  
  # 建立顺序神经网络层次模型
  model = sequential(); 
  model.add(dense(10, input_dim=1, init='uniform', activation='relu'));
  model.add(dense(1, init='uniform', activation='tanh'));
  adam = adam(lr = 0.05);
  model.compile(loss='mean_squared_error', optimizer=adam, metrics=['accuracy']);
  model.fit(x_sample, y_sample, nb_epoch=1000, batch_size=20,callbacks=callbacks_list);
  
  #测试数据
  x_new = np.linspace(low, up, 1000);
  y_new = getfit(model,x_new);
  
  # 数据可视化
  plt.plot(x,y); 
  plt.scatter(x_sample, y_sample);
  plt.plot(x_new,y_new);
  
  plt.show();

2.2 模型保存

 在神经网络训练的过程中,有一个非常重要的操作,就是将训练过程中模型的参数保存到本地,这是后面拟合过程可视化的基础。训练过程中保存的模型文件,如下图所示。

【python】matplotlib动态显示详解

模型保存的关键在于fit函数中callback函数的设置,注意到,下面的代码,每次迭代,算法都会执行callbacks函数指定的函数列表中的方法。这里,我们的回调函数设置为modelcheckpoint,其参数如下表所示:

参数 含义
filename 字符串,保存模型的路径
verbose

信息展示模式,0或1

(epoch 00001: saving model to ...)

mode ‘auto',‘min',‘max'
monitor 需要监视的值
save_best_only 当设置为true时,监测值有改进时才会保存当前的模型。在save_best_only=true时决定性能最佳模型的评判准则,例如,当监测值为val_acc时,模式应为max,当监测值为val_loss时,模式应为min。在auto模式下,评价准则由被监测值的名字自动推断
save_weights_only 若设置为true,则只保存模型权重,否则将保存整个模型(包括模型结构,配置信息等)
period checkpoint之间的间隔的epoch数
 # callback
  filepath="e:/model/weights-improvement-{epoch:00d}.hdf5";
  checkpoint= modelcheckpoint(filepath, verbose=1, save_best_only=false, mode='max');
  callbacks_list= [checkpoint];
  
  # 建立顺序神经网络层次模型
  model = sequential(); 
  model.add(dense(10, input_dim=1, init='uniform', activation='relu'));
  model.add(dense(1, init='uniform', activation='tanh'));
  adam = adam(lr = 0.05);
  model.compile(loss='mean_squared_error', optimizer=adam, metrics=['accuracy']);
  model.fit(x_sample, y_sample, nb_epoch=1000, batch_size=20,callbacks=callbacks_list);

2.3 拟合过程可视化实现

利用上述保存的模型,我们就可以通过matplotlib实时地显示拟合过程。

import math;
import random;
from matplotlib import pyplot as plt
from keras.models import sequential
from keras.layers.core import dense
import numpy as np
import matplotlib.animation as animation
from pil import image
 
#定义kdd99数据预处理函数
def sample(low, up, num):
  data = [];
  for i in range(num):
    #采样
    tmp = random.uniform(low, up);
    data.append(tmp);
  data.sort();
  return data;
 
def func(x):
  y = [];
  for i in range(len(x)):
    tmp = math.sin(x[i] - math.pi/3);
    y.append(tmp);
  return y;
 
def getfit(model,x):  
  y = [];
  for i in range(len(x)):
    tmp = model.predict([x[i]], 10);
    y.append(tmp[0][0]);
  return y;
 
def init():
  fpath = "e:/imgs/0.jpg";
  img = image.open(fpath);
  plt.axis('off') # 关掉坐标轴为 off
  return plt.imshow(img);
 
def update(i): 
  fpath = "e:/imgs/" + str(i) + ".jpg";
  img = image.open(fpath);
  plt.axis('off') # 关掉坐标轴为 off
  return plt.imshow(img);
 
if __name__ == '__main__':  
  low = 0;
  up = 2 * math.pi;
  x = np.linspace(low, up, 1000);
  y = func(x);
  
  # 数据采样
#   x_sample = sample(low,up,20);
  x_sample = [0.09326442022999694, 0.5812590520508311, 1.040490143783586, 1.5504427746047338, 2.1589557183817036, 2.6235357787018407, 2.712578091093361, 2.7379109336528167, 3.0339662651841186, 3.147676812083248, 3.58596337171837, 3.6621496731124314, 3.81130899864203, 3.833092859928872, 4.396611340802901, 4.4481080339256875, 4.609657879057151, 5.399731063412583, 5.54299720786794, 5.764084730699906];
  y_sample = func(x_sample);
  
  # 建立顺序神经网络层次模型
  model = sequential(); 
  model.add(dense(10, input_dim=1, init='uniform', activation='relu'));
  model.add(dense(1, init='uniform', activation='tanh'));
    
  plt.ion(); #开启interactive mode 成功的关键函数
  fig = plt.figure(1);
  
  for i in range(100):
    filepath="e:/model/weights-improvement-" + str(i + 1) + ".hdf5";
    model.load_weights(filepath);
    #测试数据
    x_new = np.linspace(low, up, 1000);
    y_new = getfit(model,x_new);
    # 显示数据
    plt.clf();
    plt.plot(x,y); 
    plt.scatter(x_sample, y_sample);
    plt.plot(x_new,y_new);
    
    ffpath = "e:/imgs/" + str(i) + ".jpg";
    plt.savefig(ffpath);
 
    plt.pause(0.01)       # 暂停0.01秒
    
  ani = animation.funcanimation(plt.figure(2), update,range(100),init_func=init, interval=500);
  ani.save("e:/test.gif",writer='pillow');
  
  plt.ioff()  

【python】matplotlib动态显示详解

以上所述是小编给大家介绍的matplotlib动态显示详解整合,希望对大家有所帮助