欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

mit 6.824 Distributed Systems L1 Introduction

程序员文章站 2022-03-15 16:59:01
...

为什么选择分布式系统?

  • parallelism
  • fault tolerance
  • physical
  • security/isolated

challenges:

  • concurrency
  • partial failure
  • performance

course structure

  • lectures

  • papers

  • exams

  • labs

  • project(optional)

  • Lab 1 - MapReduce

  • Lab 2 - Raft for fault tolerance

  • Lab 3 - K/V server

  • Lab 4 - standard K/V service

Infrastructure

  • storage
  • communication
  • computation

希望外表建立一个非分布式系统(abstractions)

RPC, threads, concurrency ctl (locks, etc.)

Performance

  • Scalability - 2x computers -> 2x throughput

Fault Tolerance

  • Availability
  • Recoverability
  • NV(non volatile) storge
  • Replication

Topic-consistency

Put(k,v)
Get(k) -> v

因为分布式系统中有多个表,多个表之间可能存在不一致性。

Strong consistency:保证取的肯定是最新值

Weak consistency:不保证取的是最新值

弱一致性的要求会低一点,现实中更常见。

MapReduce 的设计目的就是为了让更多的程序原来用这个框架而不用具体了解分布式的实现细节

  
Abstract view of a MapReduce job
  input is (already) split into M files
  Input1 -> Map -> a,1 b,1
  Input2 -> Map ->     b,1
  Input3 -> Map -> a,1     c,1
                    |   |   |
                    |   |   -> Reduce -> c,1
                    |   -----> Reduce -> b,2
                    ---------> Reduce -> a,2
  MR calls Map() for each input file, produces set of k2,v2
    "intermediate" data
    each Map() call is a "task"
  MR gathers all intermediate v2's for a given k2,
    and passes each key + values to a Reduce call
  final output is set of <k2,v3> pairs from Reduce()s
Example: word count
  input is thousands of text files
  Map(k, v)
    split v into words
    for each word w
      emit(w, "1")
  Reduce(k, v)
    emit(len(v))

mit 6.824 Distributed Systems L1 Introduction