欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python数据分析数据标准化及离散化详解

程序员文章站 2022-12-24 18:29:15
本文为大家分享了python数据分析数据标准化及离散化的具体内容,供大家参考,具体内容如下 标准化 1、离差标准化 是对原始数据的线性变换,使结果映射到[0,1]区间...

本文为大家分享了python数据分析数据标准化及离散化的具体内容,供大家参考,具体内容如下

标准化

1、离差标准化

是对原始数据的线性变换,使结果映射到[0,1]区间。方便数据的处理。消除单位影响及变异大小因素影响。
基本公式为:

x'=(x-min)/(max-min)

代码:

#!/user/bin/env python
#-*- coding:utf-8 -*-
#author:m10
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import mysql.connector
conn = mysql.connector.connect(host='localhost',
            user='root',
            passwd='123456',
            db='python')#链接本地数据库
sql = 'select price,comment from taob'#sql语句
data = pd.read_sql(sql,conn)#获取数据
#离差标准化
data1 = (data-data.min())/(data.max()-data.min())
print(data1)

运行结果

python数据分析数据标准化及离散化详解

2、标准差标准化

消除单位影响以及变量自身变异影响。(零-均值标准化)
基本公式为:

x'=(x-平均数)/标准差

python代码:

#!/user/bin/env python
#-*- coding:utf-8 -*-
#author:m10
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import mysql.connector
conn = mysql.connector.connect(host='localhost',
            user='root',
            passwd='123456',
            db='python')#链接本地数据库
sql = 'select price,comment from taob'#sql语句
data = pd.read_sql(sql,conn)#获取数据
#标准差标准化
data1 = (data-data.mean())/data.std()
print(data1)

运行结果:

python数据分析数据标准化及离散化详解

3、小数定标标准化

消除单位影响
基本公式为:
其中j=lg(max(|x|)),即以10为底的x的绝对值最大的对数

x' = x/10^j

实现代码为:

#!/user/bin/env python
#-*- coding:utf-8 -*-
#author:m10
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import mysql.connector
conn = mysql.connector.connect(host='localhost',
            user='root',
            passwd='123456',
            db='python')#链接本地数据库
sql = 'select price,comment from taob'#sql语句
data = pd.read_sql(sql,conn)#获取数据
#标准差标准化
j = np.ceil(np.log10(data.abs().max()))#进一取整,abs()为取绝对值
data1 = data/10**j
print(data1)


结果:

python数据分析数据标准化及离散化详解

离散化

离散化是程序设计中一个常用的技巧,它可以有效的降低时间复杂度。其基本思想就是在众多可能的情况中,只考虑需要用的值。离散化可以改进一个低效的算法,甚至实现根本不可能实现的算法

1、等宽离散化

将连续数据按照等宽区间标准离散化数据,好处之一是处理的数据是有限个数据而不是无限多。
使用pandas的cut方法。非等宽只需要更改cut的第二个参数,例如:第二个参数为[1,100,3000,10000,200000],即划分为了四个区间。

#!/user/bin/env python
#-*- coding:utf-8 -*-
#author:m10
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import mysql.connector
conn = mysql.connector.connect(host='localhost',
            user='root',
            passwd='123456',
            db='python')#链接本地数据库
sql = 'select price,comment from taob'#sql语句
data = pd.read_sql(sql,conn)#获取数据
#离散化
data1 = data['price'].t.values#获取价格的一维数组
lable=['很低','低','中','高','很高']
data2 = pd.cut(data1,5,labels=lable)
print(data2)


执行结果:

python数据分析数据标准化及离散化详解

2、等频率离散化

将相同数量的数据放进一个区间。

3、一维聚类离散化

按属性对数据进行聚类离散。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。