欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

TensorFlow实现Logistic回归

程序员文章站 2022-12-24 09:12:12
本文实例为大家分享了tensorflow实现logistic回归的具体代码,供大家参考,具体内容如下 1.导入模块 import numpy as np im...

本文实例为大家分享了tensorflow实现logistic回归的具体代码,供大家参考,具体内容如下

1.导入模块

import numpy as np
import pandas as pd
from pandas import series,dataframe

from matplotlib import pyplot as plt
%matplotlib inline

#导入tensorflow
import tensorflow as tf

#导入mnist(手写数字数据集)
from tensorflow.examples.tutorials.mnist import input_data

2.获取训练数据和测试数据

import ssl 
ssl._create_default_https_context = ssl._create_unverified_context

mnist = input_data.read_data_sets('./tensorflow',one_hot=true)

test = mnist.test
test_images = test.images

train = mnist.train
images = train.images


3.模拟线性方程

#创建占矩阵位符x,y
x = tf.placeholder(tf.float32,shape=[none,784])
y = tf.placeholder(tf.float32,shape=[none,10])

#随机生成斜率w和截距b
w = tf.variable(tf.zeros([784,10]))
b = tf.variable(tf.zeros([10]))

#根据模拟线性方程得出预测值
y_pre = tf.matmul(x,w)+b

#将预测值结果概率化
y_pre_r = tf.nn.softmax(y_pre)

4.构造损失函数

# -y*tf.log(y_pre_r) --->-pi*log(pi)  信息熵公式

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pre_r),axis=1))

5.实现梯度下降,获取最小损失函数

#learning_rate:学习率,是进行训练时在最陡的梯度方向上所采取的「步」长;
learning_rate = 0.01
optimizer = tf.train.gradientdescentoptimizer(learning_rate).minimize(cost)

6.tensorflow初始化,并进行训练

#定义相关参数

#训练循环次数
training_epochs = 25
#batch 一批,每次训练给算法10个数据
batch_size = 10
#每隔5次,打印输出运算的结果
display_step = 5


#预定义初始化
init = tf.global_variables_initializer()

#开始训练
with tf.session() as sess:
  #初始化
  sess.run(init)
  #循环训练次数
  for epoch in range(training_epochs):
    avg_cost = 0.
    #总训练批次total_batch =训练总样本量/每批次样本数量
    total_batch = int(train.num_examples/batch_size)
    for i in range(total_batch):
      #每次取出100个数据作为训练数据
      batch_xs,batch_ys = mnist.train.next_batch(batch_size)
      _, c = sess.run([optimizer,cost],feed_dict={x:batch_xs,y:batch_ys})
      avg_cost +=c/total_batch
    if(epoch+1)%display_step == 0:
      print(batch_xs.shape,batch_ys.shape)
      print('epoch:','%04d'%(epoch+1),'cost=','{:.9f}'.format(avg_cost))
  print('optimization finished!')

  #7.评估效果
  # test model
  correct_prediction = tf.equal(tf.argmax(y_pre_r,1),tf.argmax(y,1))
  # calculate accuracy for 3000 examples
  # tf.cast类型转换
  accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
  print("accuracy:",accuracy.eval({x: mnist.test.images[:3000], y: mnist.test.labels[:3000]}))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。