python高阶函数的使用
目录
python高阶函数的使用
1、map
python内建了map()函数,map()函数接受两个参数,一个是函数,一个是iterable,map将传入的函数依次作用到序列的每一个元素上,并把结果作为新的iterator返回。
举例说明,比如我们有一个函数f(x)=x*2,要把这个函数作用在一个list[1, 2, 3, 4, 5, 6, 7, 8, 9]上,就可以用map()实现。
>>> def f(x): ... return x*2 ... >>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> list(r) [2, 4, 6, 8, 10, 12, 14, 16, 18]
map()传入的第一个参数是f,即函数对象本身。由于结果r是一个iterator,iterator是惰性序列,因此通过list()函数让它把整个序列都计算出来并返回一个list。
你可能会想,不需要map()函数,写一个循环,也可以计算出结果:
l = [] for i in [1, 2, 3, 4, 5, 6, 7, 8, 9]: l.append(f(i)) print(l)
的确也可以,但是,从上面的循环代码,能一眼看明白”把f(x)作用在list的每一个元素并把结果生成一个新的list“吗?
所以,map()作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的f(x)=x*2,还可以计算任意复杂的函数,比如把这个list所有的数字转为字符串:
>>> list(map(str,[1, 2, 3, 4, 5, 6, 7, 8, 9])) ['1', '2', '3', '4', '5', '6', '7', '8', '9']
只需要一行代码就可以搞定。
2、reduce
再看reduce的用法。reduce是把一个函数作用在一个序列[x1, x2, x3……]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累计计算。简单来说,就是先计算x1和x2的结果,再拿结果与x3计算,依次类推。
reduce(f, [x1, x2, x3, x4]) = f(f(f(x1,x2), x3), x4)
比如说一个序列求和,就可以用reduce实现。
>>> from functools import reduce >>> def add(x, y): ... return x + y ... >>> reduce(add, [1, 3, 5, 7, 9]) 25
当然求和运算可以直接使用python内建函数sum(),没必要动用reduce。
但是如果要把序列[1, 3, 5, 7, 9]变换为整数13579,reduce就可以派上用场:
>>> from functools import reduce >>> def fn(x, y): ... return x * 10 + y ... >>> reduce(fn, [1, 3, 5, 7, 9]) 13579
这个例子本身没多大用处,但是,如果考虑到字符串str也是一个序列,对上面的例子稍加改动,配合map,我们就可以写出把str转换为int的函数:
>>> from functools import reduce >>> def fn(x, y): ... return x * 10 + y ... >>> def char2num(s): ... digits = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9} ... return digits[s] ... >>> reduce(fn, map(char2num, '13579')) 13579
整理成一个str2int的函数就是:
from functools import reduce digits = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9} def str2int(s): def fn(x, y): return x * 10 + y def char2num(s): return digits[s] return reduce(fn, map(char2num, s))
还可以用lambda函数进一步简化成:
from functools import reduce digits = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9} def char2num(s): return digits[s] def str2int(s): return reduce(lambda x, y: x * 10 + y, map(char2num, s))
也就是说,假设python没有提供int()函数,你完全可以自己写一个把字符串转化为整数的函数,而且只需要几行代码。
3、filter
python内建的filter()函数用于过滤序列。
和map()类似,filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每一个元素,然后根据返回值是true还是false决定保留还是丢弃该元素。
例如,在一个list中,删掉偶数,只保留奇数,可以这么写:
def is_odd(n): return n % 2 == 1 list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15])) # 结果: [1, 5, 9, 15]
把一个序列中的空字符串删掉,可以这么写:
def not_empty(s): return s and s.strip() list(filter(not_empty, ['a', '', 'b', none, 'c', ' '])) # 结果: ['a', 'b', 'c']
可见用filter()这个高阶函数,关键在于正确实现一个筛选函数。
注意到filter()函数返回的是一个iterator,也就是一个惰性序列,所有要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list。
4、sorted
排序也是在程序中经常用到的算法。无论使用冒泡排序还是快速排序,排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来。
python内置的sorted()函数就可以对list进行排序:
>>> sorted([36, 5, -12, 9, -21]) [-21, -12, 5, 9, 36]
此外,sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:
>>> sorted([36, 5, -12, 9, -21], key=abs) [5, 9, -12, -21, 36]
key指定的函数将作用于list的每一个元素上,并根据key函数返回的结果进行排序。
我们再看一个字符串排序的例子:
>>> sorted(['bob', 'about', 'zoo', 'credit']) ['credit', 'zoo', 'about', 'bob']
默认情况下,对字符串排序,是按照ascii的大小比较的,由于'z' < 'a',结果,大写字母z会排在小写字母a的前面。
现在,我们提出排序应该忽略大小写,按照字母序排序。要实现这个算法,不必对现有代码大加改动,只要我们能用一个key函数把字符串映射为忽略大小写排序即可。忽略大小写来比较两个字符串,实际上就是先把字符串都变成大写(或者都变成小写),再比较。
这样,我们给sorted传入key函数,即可实现忽略大小写的排序:
>>> sorted(['bob', 'about', 'zoo', 'credit'], key=str.lower) ['about', 'bob', 'credit', 'zoo']
要进行反向排序,不必改动key函数,可以传入第三个参数reverse=true:
>>> sorted(['bob', 'about', 'zoo', 'credit'], key=str.lower, reverse=true) ['zoo', 'credit', 'bob', 'about']
5、小结
高阶函数的抽象能力是非常强大的,在代码中善于利用这些高阶函数,可以使我们的代码变得简洁明了。