欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

在eclipse使用map reduce编写word count程序生成jar包并在虚拟机运行的步骤

程序员文章站 2022-12-05 17:31:58
恢复内容开始 1.首先准备一个需要统计的单词文件 word.txt,我们的单词是以空格分开的,统计时按照空格分隔即可 hello hadoop hello yarnhello zookeeperhdfs hadoop select from hadoopselect from yarnmapRedu ......

---恢复内容开始---

1.首先准备一个需要统计的单词文件 word.txt,我们的单词是以空格分开的,统计时按照空格分隔即可

hello hadoop
hello yarn
hello zookeeper
hdfs hadoop
select from hadoop
select from yarn
mapreduce
mapreduce

2.上传word.txt到hdfs根目录

$ bin/hdfs dfs -put test/word.txt /

3.准备工作完成后在eclipse编写代码,分别编写map、reduce、driver等java文件

wordcountmap.java

map执行我们的word.txt 文件是按行执行,每一行执行一个map

wordcountmap.java

map执行我们的word.txt 文件是按行执行,每一行执行一个map

package com.ijeffrey.mapreduce.wordcount.client;

import java.io.ioexception;

import org.apache.hadoop.io.intwritable;
import org.apache.hadoop.io.longwritable;
import org.apache.hadoop.io.text;
import org.apache.hadoop.mapreduce.mapper;
/**
* map 输出的键值对必须和reducer输入的键值对类型一致
* @author pxy
*
*/
public class wordcountmap extends mapper<longwritable, text, text, intwritable> {

private text keyout = new text();
private intwritable valueout = new intwritable(1);

@override
protected void map(longwritable key, text value, mapper<longwritable, text, text, intwritable>.context context)
throws ioexception, interruptedexception {

string line = value.tostring();
// 我的文件记录的单词是以空格记录单词,所以这里用空格来截取
string[] words = line.split(" ");

// 遍历数组,并以k v 对的形式输出
for (string word : words) {
keyout.set(word);
context.write(keyout, valueout);
}
}

}

wordcountreducer.java

package com.ijeffrey.mapreduce.wordcount.client;

import java.io.ioexception;

import org.apache.hadoop.io.intwritable;
import org.apache.hadoop.io.text;
import org.apache.hadoop.mapreduce.reducer;

/**
* reducer 输入的键值对必须和map输出的键值对类型一致
* map <hello,1> <world,1> <hello,1> <apple,1> ....
* reduce 接收 <apple,[1]> <hello,[1,1]> <world,[1]>
* @author pxy
*
*/
public class wordcountreducer extends reducer<text, intwritable, text, intwritable> {
private intwritable valueout = new intwritable();

@override
protected void reduce(text key, iterable<intwritable> values,
reducer<text, intwritable, text, intwritable>.context context) throws ioexception, interruptedexception {
int count = 0; // 统计总数

// 遍历数组,累加求和
for(intwritable value : values){

// intwritable类型不能和int类型相加,所以需要先使用get方法转换成int类型
count += value.get();
}

// 将统计的结果转成intwritable
valueout.set(count);

// 最后reduce要输出最终的 k v 对
context.write(key, valueout);

}
}

wordcountdriver.java

package com.ijeffrey.mapreduce.wordcount.client;

import java.io.ioexception;

import org.apache.hadoop.conf.configuration;
import org.apache.hadoop.fs.path;
import org.apache.hadoop.io.intwritable;
import org.apache.hadoop.io.text;
import org.apache.hadoop.mapreduce.job;
import org.apache.hadoop.mapreduce.lib.input.fileinputformat;
import org.apache.hadoop.mapreduce.lib.output.fileoutputformat;

/**
* 运行主函数
* @author pxy
*
*/
public class wordcountdriver {
public static void main(string[] args) throws ioexception, classnotfoundexception, interruptedexception {
configuration conf = new configuration();

// 获得一个job对象,用来完成一个mapreduce作业
job job = job.getinstance(conf);

// 让程序找到主入口
job.setjarbyclass(wordcountdriver.class);

// 指定输入数据的目录,指定数据计算完成后输出的目录
// sbin/yarn jar share/hadoop/xxxxxxx.jar wordcount /wordcount/input/ /wordcount/output/
fileinputformat.addinputpath(job, new path(args[0]));
fileoutputformat.setoutputpath(job, new path(args[1]));

// 告诉我调用那个map方法和reduce方法
job.setmapperclass(wordcountmap.class);
job.setreducerclass(wordcountreducer.class);

// 指定map输出键值对的类型
job.setmapoutputkeyclass(text.class);
job.setmapoutputvalueclass(intwritable.class);

// 指定reduce输出键值对的类型
job.setoutputkeyclass(text.class);
job.setoutputvalueclass(intwritable.class);

// 提交job任务
boolean result = job.waitforcompletion(true);
system.exit(result ? 0 : 1);

}
}

}

4.将编写完成的代码打成jar包,并在集群上运行

将jar上传到到服务器,启动服务后运行我们自己编写的mapreduce,统计根目录下的word.txt并将运行结果写入output

$ bin/yarn jar test/wordcount.jar com.ijeffrey.mapreduce.wordcount.client.wordcountdriver /word.txt /output

注意:运行jar的时候要添加driver的完全路径
在eclipse使用map reduce编写word count程序生成jar包并在虚拟机运行的步骤

运行完成后查看output结果:

$ bin/hdfs dfs -text /output12/part-r-00000

在eclipse使用map reduce编写word count程序生成jar包并在虚拟机运行的步骤