欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

PHP实现八皇后算法

程序员文章站 2022-11-15 22:25:41
回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。回溯法是一种选优搜索法,按选优条件向前...

回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

回溯算法的基本思想是:从一条路往前走,能进则进,不能进则退回来,换一条路再试。

八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。该问题是国际西洋棋棋手马克斯·贝瑟尔于1848年提出:在8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。

这边先以4皇后来解释解决步骤:

详细说明

在第一行有四种可能,选择第一个位置放上皇后

PHP实现八皇后算法

第二行原本可以有四种可能摆放,但是第一第二个已经和第一行的皇后冲突了,因此只剩下第三第四个格子了,先选择第三个格子

PHP实现八皇后算法

接下来是第三行,根据规则可以看出,第三行已经没有位置放了,因为都跟第一第二行的皇后冲突,此时返回到第二行第四个

PHP实现八皇后算法

继续来到第三行,发现只有第二个满足条件

PHP实现八皇后算法

然后发现第四行已经不能放了,只能继续返回,返回到第一行,开始下一种可能

PHP实现八皇后算法

按照 1-5 的步骤,可以找到下面的其中一种解法

PHP实现八皇后算法

总而言之,回溯法就是开始一路到底,碰到南墙了就返回走另外一条路,有点像穷举法那样走遍所有的路。

php代码实现:

<?php
 
class backtracking {
 
 protected $chessboard;  // 棋盘 二维数组 表示坐标轴
 protected $n;      // n表示几皇后
 protected $has_set_x;  // 已经设置的x坐标数组 已经设置的x坐标就不能重复了,用于检查坐标是否可用
 protected $has_set_y;  // 已经设置的y坐标数组 已经设置的y坐标就不能重复了,用于检查坐标是否可用
 protected $has_set_site; // 已经设置的点
 
 function __construct($n) {
 // 初始化数据
 $this->n = $n;
 $this->chessboard = array();
 for ($i=0; $i < $n; $i++) { 
  for ($j=0; $j < $n; $j++) { 
  $this->chessboard[$i][$j] = 0;
  }
 }
 $this->has_set_x = array();
 $this->has_set_y = array();
 $this->has_set_site = array();
 }
 
 // 获取排列
 public function getpermutation($is_get_on = true) { // is_get_on 是否获取一种排列 true:是 false:获取所有排列
 $current_n = 0; // 当前设置第几个皇后
 $start_x = 0;  // 当前的x坐标 从x开始放置尝试
 $permutation_array = array(); // 全部皇后放置成功的排列数组
 while ($current_n < $this->n && $current_n >= 0) {
  $site_result = $this->setqueensite($current_n, $start_x); // 设置皇后位置
  if($site_result == true && $current_n + 1 >= $this->n) { // 如果最后的皇后位置放置成功则记录信息
  $permutation_array[] = array_merge($this->has_set_site, array(array('x' => $site_result['x'], 'y' => $site_result['y'])));
  if($is_get_on == false) { // 如果是获取所有排列,则设置当前放置失败,让程序回溯继续找到其他排列
   $site_result = false;
  }
  }
  if($site_result == true) {
  $this->chessboard[$site_result['x']][$site_result['y']] = 1;
  $this->has_set_x[] = $site_result['x'];
  $this->has_set_y[] = $site_result['y'];
  $this->has_set_site[] = array('x' => $site_result['x'], 'y' => $site_result['y']);
  $current_n++; // 皇后位置放置成功,继续设置下一个皇后,重置下一个皇后的x坐标从0开始
  $start_x = 0;
  }else {
  // 当前皇后找不到放置的位置,则需要回溯到上一步
  $previous_site = array_pop($this->has_set_site); // 找到上一步皇后的位置
  if(!empty($previous_site)) {
   $start_x = $previous_site['x'] + 1; // 让上一步的皇后的x坐标+1继续尝试放置
   $this->deletearrayvalue($this->has_set_x, $previous_site['x']);
   $this->deletearrayvalue($this->has_set_y, $previous_site['y']);
   $this->chessboard[$previous_site['x']][$previous_site['y']] = 0;
  }
  $current_n--; // 回溯到上一步,即让一个皇后x坐标+1继续尝试放置
  }
 }
 return $permutation_array;
 }
 
 // 设置皇后位置
 public function setqueensite($n, $start_x) {
 $start_y = $n;
 if($start_x >= $this->n) return false;
 $check_result = $this->checkqueensite($start_x, $start_y); // 检查当前是否可放置
 if($check_result == true) {
  return array('x' => $start_x, 'y' => $start_y);
 }else { // 不可放置,则x坐标+1,继续尝试
  $start_x++;
  return $this->setqueensite($n, $start_x);
 }
 }
 
 // 检查皇后位置是否正确
 public function checkqueensite($x, $y) {
 // 判断当前坐标的横、纵、斜线是否存在已经放置的皇后
 if(in_array($x, $this->has_set_x)) return false;
 if(in_array($y, $this->has_set_y)) return false;
 $operate_array = array(
  array('operate_x' => '+', 'operate_y' => '+'),
  array('operate_x' => '-', 'operate_y' => '-'),
  array('operate_x' => '+', 'operate_y' => '-'),
  array('operate_x' => '-', 'operate_y' => '+')
 );
 foreach ($operate_array as $key => $value) {
  $diagonal_x = $x;
  $diagonal_y = $y;
  while (true) {
  eval("\$diagonal_x=$diagonal_x {$value['operate_x']} 1;");
  eval("\$diagonal_y=$diagonal_y {$value['operate_y']} 1;");
  if($diagonal_x >= $this->n || $diagonal_y >= $this->n || $diagonal_x < 0 || $diagonal_y < 0) break;
  if($this->chessboard[$diagonal_x][$diagonal_y] == 1) return false;
  }
 }
 return true;
 }
 
 // 删除数组元素
 public function deletearrayvalue(&$array, $value) {
 $delete_key = array_search($value, $array);
 array_splice($array, $delete_key, 1);
 }
 
}
 
$n = 8; // 8表示获取8皇后的排列组合
$backtracking = new backtracking($n);
$permutations = $backtracking->getpermutation(false);
var_dump($permutations); // 输出92种排列

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。