欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

表数据量影响MySQL索引选择

程序员文章站 2022-11-15 11:26:25
现象 新建了一张员工表,插入了少量数据,索引中所有的字段均在where条件出现时,正确走到了idx_nap索引,但是where出现部分自左开始的索引时,却进行全表扫描,与MySQL官方所说的最左匹配原则“相悖”。 数据背景 sql CREATE TABLE ( int(11) NOT NULL AU ......

现象

新建了一张员工表,插入了少量数据,索引中所有的字段均在where条件出现时,正确走到了idx_nap索引,但是where出现部分自左开始的索引时,却进行全表扫描,与mysql官方所说的最左匹配原则“相悖”。

数据背景

create table `staffs` (
  `id` int(11) not null auto_increment,
  `name` varchar(24) not null default '' comment '姓名',
  `age` int(11) not null default '0' comment '年龄',
  `pos` varchar(20) not null default '' comment '职位',
  `add_time` timestamp not null default current_timestamp comment '入职时间',
  primary key (`id`),
  key `idx_nap` (`name`,`age`,`pos`)
) engine=innodb auto_increment=8 default charset=utf8 comment='员工记录表';

表中数据如下:
id  name    age pos     add_time
1   july    23  dev     2018-06-04 16:02:02
2   clive   22  dev     2018-06-04 16:02:32
3   cleva   24  test    2018-06-04 16:02:38
4   july    23  test    2018-06-04 16:12:22
5   july    23  pre     2018-06-04 16:12:37
6   clive   22  pre     2018-06-04 16:12:48
7   july    25  dev     2018-06-04 16:30:17

explain语句看下执行计划

-- 全匹配走了索引
explain select * from staffs where name = 'july' and age = 23 and pos = 'dev';
id  select_type table   partitions  type    possible_keys   key key_len ref rows    filtered    extra
1   simple  staffs  null    ref idx_nap idx_nap 140 const,const,const   1   100.00  null

开启优化器跟踪优化过程

-- 左侧部分匹配却没有走索引,全表扫描
explain select * from staffs where name = 'july' and age = 23;
id  select_type table   partitions  type    possible_keys   key key_len ref rows    filtered    extra
1   simple  staffs2 null    all idx_nap null    null    null    6   50.00   using where
-- 开启优化器跟踪
set session optimizer_trace='enabled=on';
-- 在执行完查询语句后,在执行以下的select语句可以查看具体的优化器执行过程
select * from information_schema.optimizer_trace;

trace部分的内容

{
  "steps": [
    {
      "join_preparation": {
        "select#": 1,
        "steps": [
          {
            "expanded_query": "/* select#1 */ select `staffs`.`id` as `id`,`staffs`.`name` as `name`,`staffs`.`age` as `age`,`staffs`.`pos` as `pos`,`staffs`.`add_time` as `add_time` from `staffs` where ((`staffs`.`name` = 'july') and (`staffs`.`age` = 23))"
          }
        ]
      }
    },
    {
      "join_optimization": {
        "select#": 1,
        "steps": [
          {
            "condition_processing": {
              "condition": "where",
              "original_condition": "((`staffs`.`name` = 'july') and (`staffs`.`age` = 23))",
              "steps": [
                {
                  "transformation": "equality_propagation",
                  "resulting_condition": "((`staffs`.`name` = 'july') and multiple equal(23, `staffs`.`age`))"
                },
                {
                  "transformation": "constant_propagation",
                  "resulting_condition": "((`staffs`.`name` = 'july') and multiple equal(23, `staffs`.`age`))"
                },
                {
                  "transformation": "trivial_condition_removal",
                  "resulting_condition": "((`staffs`.`name` = 'july') and multiple equal(23, `staffs`.`age`))"
                }
              ]
            }
          },
          {
            "substitute_generated_columns": {
            }
          },
          {
            "table_dependencies": [
              {
                "table": "`staffs`",
                "row_may_be_null": false,
                "map_bit": 0,
                "depends_on_map_bits": [
                ]
              }
            ]
          },
          {
            "ref_optimizer_key_uses": [
              {
                "table": "`staffs`",
                "field": "name",
                "equals": "'july'",
                "null_rejecting": false
              },
              {
                "table": "`staffs`",
                "field": "age",
                "equals": "23",
                "null_rejecting": false
              }
            ]
          },
          {
            "rows_estimation": [
              {
                "table": "`staffs`",
                "range_analysis": {
                  "table_scan": {
                    "rows": 6,
                    "cost": 4.3
                  },
                  "potential_range_indexes": [
                    {
                      "index": "primary",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_nap",
                      "usable": true,
                      "key_parts": [
                        "name",
                        "age",
                        "pos",
                        "id"
                      ]
                    }
                  ],
                  "setup_range_conditions": [
                  ],
                  "group_index_range": {
                    "chosen": false,
                    "cause": "not_group_by_or_distinct"
                  },
                  "analyzing_range_alternatives": {
                    "range_scan_alternatives": [
                      {
                        "index": "idx_nap",
                        "ranges": [
                          "july <= name <= july and 23 <= age <= 23"
                        ],
                        "index_dives_for_eq_ranges": true,
                        "rowid_ordered": false,
                        "using_mrr": false,
                        "index_only": false,
                        "rows": 3,
                        "cost": 4.61,
                        "chosen": false,
                        "cause": "cost"
                      }
                    ],
                    "analyzing_roworder_intersect": {
                      "usable": false,
                      "cause": "too_few_roworder_scans"
                    }
                  }
                }
              }
            ]
          },
          {
            "considered_execution_plans": [
              {
                "plan_prefix": [
                ],
                "table": "`staffs`",
                "best_access_path": {
                  "considered_access_paths": [
                    {
                    //可以看到这边mysql计算得到使用索引的成本为2.6
                      "access_type": "ref",
                      "index": "idx_nap",
                      "rows": 3,
                      "cost": 2.6,
                      "chosen": true
                    },
                    {
                    //而全表扫描计算所得的成本为2.2
                      "rows_to_scan": 6,
                      "access_type": "scan",
                      "resulting_rows": 6,
                      "cost": 2.2,
                      "chosen": true
                    }
                  ]
                },
                //因此选择了成本更低的scan
                "condition_filtering_pct": 100,
                "rows_for_plan": 6,
                "cost_for_plan": 2.2,
                "chosen": true
              }
            ]
          },
          {
            "attaching_conditions_to_tables": {
              "original_condition": "((`staffs`.`age` = 23) and (`staffs`.`name` = 'july'))",
              "attached_conditions_computation": [
              ],
              "attached_conditions_summary": [
                {
                  "table": "`staffs`",
                  "attached": "((`staffs`.`age` = 23) and (`staffs`.`name` = 'july'))"
                }
              ]
            }
          },
          {
            "refine_plan": [
              {
                "table": "`staffs`"
              }
            ]
          }
        ]
      }
    },
    {
      "join_execution": {
        "select#": 1,
        "steps": [
        ]
      }
    }
  ]
}

增加表数据量

-- 接下来增大表的数据量
insert into `staffs` (`name`, `age`, `pos`, `add_time`)
values
    ('july', 25, 'dev', '2018-06-04 16:30:17'),
    ('july', 23, 'dev1', '2018-06-04 16:02:02'),
    ('july', 23, 'dev2', '2018-06-04 16:02:02'),
    ('july', 23, 'dev3', '2018-06-04 16:02:02'),
    ('july', 23, 'dev4', '2018-06-04 16:02:02'),
    ('july', 23, 'dev6', '2018-06-04 16:02:02'),
    ('july', 23, 'dev5', '2018-06-04 16:02:02'),
    ('july', 23, 'dev7', '2018-06-04 16:02:02'),
    ('july', 23, 'dev8', '2018-06-04 16:02:02'),
    ('july', 23, 'dev9', '2018-06-04 16:02:02'),
    ('july', 23, 'dev10', '2018-06-04 16:02:02'),
    ('clive', 23, 'dev1', '2018-06-04 16:02:02'),
    ('clive', 23, 'dev2', '2018-06-04 16:02:02'),
    ('clive', 23, 'dev3', '2018-06-04 16:02:02'),
    ('clive', 23, 'dev4', '2018-06-04 16:02:02'),
    ('clive', 23, 'dev6', '2018-06-04 16:02:02'),
    ('clive', 23, 'dev5', '2018-06-04 16:02:02'),
    ('clive', 23, 'dev7', '2018-06-04 16:02:02'),
    ('clive', 23, 'dev8', '2018-06-04 16:02:02'),
    ('clive', 23, 'dev9', '2018-06-04 16:02:02'),
    ('clive', 23, 'dev10', '2018-06-04 16:02:02');

执行explain

-- 再次执行同样的查询语句,会发现走到索引上了
explain select * from staffs where name = 'july' and age = 23;
id  select_type table   partitions  type    possible_keys   key key_len ref rows    filtered    extra
1   simple  staffs  null    ref idx_nap idx_nap 78  const,const 13  100.00  null

查看新的trace内容

-- 再看下优化器执行过程
{
  "steps": [
    {
      "join_preparation": {
        "select#": 1,
        "steps": [
          {
            "expanded_query": "/* select#1 */ select `staffs`.`id` as `id`,`staffs`.`name` as `name`,`staffs`.`age` as `age`,`staffs`.`pos` as `pos`,`staffs`.`add_time` as `add_time` from `staffs` where ((`staffs`.`name` = 'july') and (`staffs`.`age` = 23))"
          }
        ]
      }
    },
    {
      "join_optimization": {
        "select#": 1,
        "steps": [
          {
            "condition_processing": {
              "condition": "where",
              "original_condition": "((`staffs`.`name` = 'july') and (`staffs`.`age` = 23))",
              "steps": [
                {
                  "transformation": "equality_propagation",
                  "resulting_condition": "((`staffs`.`name` = 'july') and multiple equal(23, `staffs`.`age`))"
                },
                {
                  "transformation": "constant_propagation",
                  "resulting_condition": "((`staffs`.`name` = 'july') and multiple equal(23, `staffs`.`age`))"
                },
                {
                  "transformation": "trivial_condition_removal",
                  "resulting_condition": "((`staffs`.`name` = 'july') and multiple equal(23, `staffs`.`age`))"
                }
              ]
            }
          },
          {
            "substitute_generated_columns": {
            }
          },
          {
            "table_dependencies": [
              {
                "table": "`staffs`",
                "row_may_be_null": false,
                "map_bit": 0,
                "depends_on_map_bits": [
                ]
              }
            ]
          },
          {
            "ref_optimizer_key_uses": [
              {
                "table": "`staffs`",
                "field": "name",
                "equals": "'july'",
                "null_rejecting": false
              },
              {
                "table": "`staffs`",
                "field": "age",
                "equals": "23",
                "null_rejecting": false
              }
            ]
          },
          {
            "rows_estimation": [
              {
                "table": "`staffs`",
                "range_analysis": {
                  "table_scan": {
                    "rows": 27,
                    "cost": 8.5
                  },
                  "potential_range_indexes": [
                    {
                      "index": "primary",
                      "usable": false,
                      "cause": "not_applicable"
                    },
                    {
                      "index": "idx_nap",
                      "usable": true,
                      "key_parts": [
                        "name",
                        "age",
                        "pos",
                        "id"
                      ]
                    }
                  ],
                  "setup_range_conditions": [
                  ],
                  "group_index_range": {
                    "chosen": false,
                    "cause": "not_group_by_or_distinct"
                  },
                  "analyzing_range_alternatives": {
                    "range_scan_alternatives": [
                      {
                        "index": "idx_nap",
                        "ranges": [
                          "july <= name <= july and 23 <= age <= 23"
                        ],
                        "index_dives_for_eq_ranges": true,
                        "rowid_ordered": false,
                        "using_mrr": false,
                        "index_only": false,
                        "rows": 13,
                        "cost": 16.61,
                        "chosen": false,
                        "cause": "cost"
                      }
                    ],
                    "analyzing_roworder_intersect": {
                      "usable": false,
                      "cause": "too_few_roworder_scans"
                    }
                  }
                }
              }
            ]
          },
          {
            "considered_execution_plans": [
              {
                "plan_prefix": [
                ],
                "table": "`staffs`",
                "best_access_path": {
                  "considered_access_paths": [
                    {
                    //使用索引的成本变为了5.3
                      "access_type": "ref",
                      "index": "idx_nap",
                      "rows": 13,
                      "cost": 5.3,
                      "chosen": true
                    },
                    {
                    //scan的成本变为了6.4
                      "rows_to_scan": 27,
                      "access_type": "scan",
                      "resulting_rows": 27,
                      "cost": 6.4,
                      "chosen": false
                    }
                  ]
                },
                //使用索引查询的成本更低,因此选择了走索引
                "condition_filtering_pct": 100,
                "rows_for_plan": 13,
                "cost_for_plan": 5.3,
                "chosen": true
              }
            ]
          },
          {
            "attaching_conditions_to_tables": {
              "original_condition": "((`staffs`.`age` = 23) and (`staffs`.`name` = 'july'))",
              "attached_conditions_computation": [
              ],
              "attached_conditions_summary": [
                {
                  "table": "`staffs`",
                  "attached": null
                }
              ]
            }
          },
          {
            "refine_plan": [
              {
                "table": "`staffs`"
              }
            ]
          }
        ]
      }
    },
    {
      "join_execution": {
        "select#": 1,
        "steps": [
        ]
      }
    }
  ]
}

结论

mysql表数据量的大小,会影响索引的选择,具体的情况还是通过explain和optimizer trace来查看与分析。