莫队算法例题,模板及小结
【莫队算法详解及例题[bzoj]2038 小z的袜子
及知乎
以上是弱渣的学习过程,及参考的大神博客和知乎,以下是做到的题目
g - xor and favorite number
bob has a favorite number k and ai of length n. now he asks you to answer m queries. each query is given by a pair li and ri and asks you to count the number of pairs of integers i and j, such that l ≤ i ≤ j ≤ r and the xor of the numbers ai, ai + 1, …, aj is equal to k.
input
the first line of the input contains integers n, m and k (1 ≤ n, m ≤ 100 000, 0 ≤ k ≤ 1 000 000) — the length of the array, the number of queries and bob’s favorite number respectively.
the second line contains n integers ai (0 ≤ ai ≤ 1 000 000) — bob’s array.
then m lines follow. the i-th line contains integers li and ri (1 ≤ li ≤ ri ≤ n) — the parameters of the i-th query.
output
print m lines, answer the queries in the order they appear in the input.
examples
input
6 2 3
1 2 1 1 0 3
1 6
3 5
output
7
0
input
5 3 1
1 1 1 1 1
1 5
2 4
1 3
output
9
4
4
note
in the first sample the suitable pairs of i and j for the first query are: (1, 2), (1, 4), (1, 5), (2, 3), (3, 6), (5, 6), (6, 6). not a single of these pairs is suitable for the second query.
in the second sample xor equals 1 for all subarrays of an odd length.
题目链接:https://vjudge.net/contest/239536#problem/g
题解:由于a^a=0;
如果a^b=k;则a^k=b;
若要a[i]^a[i+1]….^a[j] )=k;
即( a[1]^a[2]^…a[i] ) ^( a[1]^a[2]^…^a[i-1]^a[i]^a[i+1]….^a[j] )。
就可以采用前缀和思想。
让flag[ a[i] ^k]表示a[i] ^k出现的次数。
---------------------
作者:*leiju__
来源:csdn
原文:https://blog.csdn.net/*leiju__/article/details/81174608
版权声明:本文为博主原创文章,转载请附上博文链接!
ac代码
#include<iostream> #include<cstdio> #include<algorithm> #include<cmath> #define maxn 1<<20 using namespace std; int a[maxn]; int pos[maxn]; long long ans[maxn],flag[maxn]; struct query{ int l,r,id; }q[maxn]; bool cmp(struct query x,struct query y){ if(pos[x.l]==pos[y.l]){ return x.r<y.r; } return pos[x.l]<pos[y.l]; } int n,m,k; int l=1,r=0; long long ans=0; //其它基本不变,就是add和dec函数会变化 void add(int x){ ans+=flag[a[x]^k]; flag[a[x]]++; } void del(int x){ flag[a[x]]--; //flag【a【x】】 是a【x】在前缀中出现的次数 ans-=flag[a[x]^k]; } int main(){ scanf("%d%d%d",&n,&m,&k); int sz=sqrt(n); for(int i=1;i<=n;i++){ scanf("%d",&a[i]); a[i]=a[i]^a[i-1]; //a[i]表示前i个值异或的结果 pos[i]=i/sz; } for(int i=1;i<=m;i++){ scanf("%d%d",&q[i].l,&q[i].r); q[i].id=i; } sort(q+1,q+m+1,cmp); flag[0]=1; for(int i=1;i<=m;i++){ while(l<q[i].l){ del(l-1); l++; } while(l>q[i].l){ l--; add(l-1); } while(r<q[i].r){ r++; add(r); } while(r>q[i].r){ del(r); r--; } ans[q[i].id]=ans; } for(int i=1;i<=m;i++){ printf("%lld\n",ans[i]); } return 0; }
---------------------
作者:*leiju__
来源:csdn
原文:
留作模板
下一篇: 使用ARM汇编破解iOS程序基础知识分享