python 检测图片是否有马赛克
程序员文章站
2022-03-14 23:50:44
首先是canny边缘检测,将图片的边缘检测出来,参考博客原理讲的很清晰,给原博主一个赞边缘检测之后按照正方形检索来判定是否是马赛克内容原理知晓了之后就很好做了话说matlab转化为python的过程还...
首先是canny边缘检测,将图片的边缘检测出来,参考博客
原理讲的很清晰,给原博主一个赞
边缘检测之后按照正方形检索来判定是否是马赛克内容
原理知晓了之后就很好做了
话说matlab转化为python的过程还是很有趣的
from pil import image import numpy as np import math import warnings #算法来源,博客https://www.cnblogs.com/techyan1990/p/7291771.html和https://blog.csdn.net/zhancf/article/details/49736823 highhold=200#高阈值 lowhold=40#低阈值 warnings.filterwarnings("ignore") demo=image.open("noise_check//23.jpg") im=np.array(demo.convert('l'))#灰度化矩阵 print(im.shape) print(im.dtype) height=im.shape[0]#尺寸 width=im.shape[1] gm=[[0 for i in range(width)]for j in range(height)]#梯度强度 gx=[[0 for i in range(width)]for j in range(height)]#梯度x gy=[[0 for i in range(width)]for j in range(height)]#梯度y theta=0#梯度方向角度360度 dirr=[[0 for i in range(width)]for j in range(height)]#0,1,2,3方位判定值 highorlow=[[0 for i in range(width)]for j in range(height)]#强边缘、弱边缘、忽略判定值2,1,0 rm=np.array([[0 for i in range(width)]for j in range(height)])#输出矩阵 #高斯滤波平滑,3x3 for i in range(1,height-1,1): for j in range(1,width-1,1): rm[i][j]=im[i-1][j-1]*0.0924+im[i-1][j]*0.1192+im[i-1][j+1]*0.0924+im[i][j-1]*0.1192+im[i][j]*0.1538+im[i][j+1]*0.1192+im[i+1][j-1]*0.0924+im[i+1][j]*0.1192+im[i+1][j+1]*0.0924 for i in range(1,height-1,1):#梯度强度和方向 for j in range(1,width-1,1): gx[i][j]=-rm[i-1][j-1]+rm[i-1][j+1]-2*rm[i][j-1]+2*rm[i][j+1]-rm[i+1][j-1]+rm[i+1][j+1] gy[i][j]=rm[i-1][j-1]+2*rm[i-1][j]+rm[i-1][j+1]-rm[i+1][j-1]-2*rm[i+1][j]-rm[i+1][j+1] gm[i][j]=pow(gx[i][j]*gx[i][j]+gy[i][j]*gy[i][j],0.5) theta=math.atan(gy[i][j]/gx[i][j])*180/3.1415926 if theta>=0 and theta<45: dirr[i][j]=2 elif theta>=45 and theta<90: dirr[i][j]=3 elif theta>=90 and theta<135: dirr[i][j]=0 else: dirr[i][j]=1 for i in range(1,height-1,1):#非极大值抑制,双阈值监测 for j in range(1,width-1,1): nw=gm[i-1][j-1] n=gm[i-1][j] ne=gm[i-1][j+1] w=gm[i][j-1] e=gm[i][j+1] sw=gm[i+1][j-1] s=gm[i+1][j] se=gm[i+1][j+1] if dirr[i][j]==0: d=abs(gy[i][j]/gx[i][j]) gp1=(1-d)*e+d*ne gp2=(1-d)*w+d*sw elif dirr[i][j]==1: d=abs(gx[i][j]/gy[i][j]) gp1=(1-d)*n+d*ne gp2=(1-d)*s+d*sw elif dirr[i][j]==2: d=abs(gx[i][j]/gy[i][j]) gp1=(1-d)*n+d*nw gp2=(1-d)*s+d*se elif dirr[i][j]==3: d=abs(gy[i][j]/gx[i][j]) gp1=(1-d)*w+d*nw gp2=(1-d)*e+d*se if gm[i][j]>=gp1 and gm[i][j]>=gp2: if gm[i][j]>=highhold: highorlow[i][j]=2 rm[i][j]=1 elif gm[i][j]>=lowhold: highorlow[i][j]=1 else: highorlow[i][j]=0 rm[i][j]=0 else: highorlow[i][j]=0 rm[i][j]=0 for i in range(1,height-1,1):#抑制孤立低阈值点 for j in range(1,width-1,1): if highorlow[i][j]==1 and (highorlow[i-1][j-1]==2 or highorlow[i-1][j]==2 or highorlow[i-1][j+1]==2 or highorlow[i][j-1]==2 or highorlow[i][j+1]==2 or highorlow[i+1][j-1]==2 or highorlow[i+1][j]==2 or highorlow[i+1][j+1]==2): #highorlow[i][j]=2 rm[i][j]=1 #img=image.fromarray(rm)#矩阵化为图片 #img.show() #正方形法判定是否有马赛克 value=35 lowvalue=16 imgnumber=[0 for i in range(value)] for i in range(1,height-1,1):#性价比高的8点判定法 for j in range(1,width-1,1): for k in range(lowvalue,value): count=0 if i+k-1>=height or j+k-1>=width:continue if rm[i][j]!=0:count+=1#4个顶点 if rm[i+k-1][j]!=0:count+=1 if rm[i][j+k-1]!=0:count+=1 if rm[i+k-1][j+k-1]!=0:count+=1 e=(k-1)//2 if rm[i+e][j]!=0:count+=1 if rm[i][j+e]!=0:count+=1 if rm[i+e][j+k-1]!=0:count+=1 if rm[i+k-1][j+e]!=0:count+=1 if count>=6: imgnumber[k]+=1 for i in range(lowvalue,value): print("length:{} number:{}".format(i,imgnumber[i]))
结果图可以上一下了
可以看出在一定程度上能够检测出马赛克内容
原图
边缘图案
正方形数量
以上就是python 检测图片是否有马赛克的详细内容,更多关于python 检测图片马赛克的资料请关注其它相关文章!