欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  科技

MetaMind获800万美元风投资金,揭开深度学习的神秘面纱

程序员文章站 2022-10-16 18:00:44
编者按:深度学习的概念源于人工神经网络的研究。作为人工智能的一种,“深度学习”是一个训练系统,能处理海量信息,它们来源于音频、图像和其他输入的信号,如果向这个系统展示新信息,它...

编者按:深度学习的概念源于人工神经网络的研究。作为人工智能的一种,“深度学习”是一个训练系统,能处理海量信息,它们来源于音频、图像和其他输入的信号,如果向这个系统展示新信息,它会以推论的形式作出反溃像Google和Facebook这样的科技企业已经在这个领域取得了技术进步并展开并购,“深度学习”的初创公司也在大量涌现。

斯坦福大学研究生Richard Socher在毕业之后创建了MetaMind,且于四个月后便从风投巨头Khosla Venture和Salesforce首席执行官Marc Benioff获得 800 万美元投资。

MetaMind获800万美元风投资金,揭开深度学习的神秘面纱

(MetaMind创始人Richard Socher,和 Sven Strohband在位于加州的办公室)

Richard Socher从没想到他会进入人工智能的尖端领域,他只是想把自己喜欢的数学和语言结合起来。

但是事情一件接一件地发生了,他开发完成了一项出色的技术“递归神经网络”(recursive neural networks),现在,他从大学离职后创办的企业MetaMind正式启动了,并获得了数家著名企业的金融支持。

公司成立仅四个月,Socher和他的团队力图证明在“深度学习”领域MetaMind处理图像和文本的能力比目前任何技术都更卓越。为此,除了宣布从Khosla Venture和Salesforce首席执行官Marc Benioff那里得到了800万美元的资金之外,MetaMind还在官网演示了他们的多种技术能力。

作为人工智能的一种,“深度学习”是一个训练系统,能处理海量信息,它们来源于音频、图像和其他输入的信号,如果向这个系统展示新信息,它会以推论的形式作出反溃像Google和Facebook这样的科技企业已经在这个领域取得了技术进步并展开并购,“深度学习”的初创公司也在大量涌现。

但是,Socher认为人们在使用MetaMind时能体会到它的优势,这家初创公司拥有两项核心技术,一是受聘于Facebook的纽约大学教授Yann LeCun研发的“卷积神经网络”,该技术在图片挖掘方面取得了突破性进展;还有就是索赫尔自己的“递归神经网络”,它在文本处理方面成就斐然。

Socher接受科技博客VentureBeat的采访时说:“我们处在这项技术的前沿,并能与其他公开的技术一较高下,我们想尽量用科学化的语言来表述它。”

像拖放那样简单

它就像鼠标拖放一样简单,这意味着现在几乎任何人都能进行“深度学习”。

“你不必是程序员”,正如Socher演示的那样,用户可以给MetaMind一些简单的文本来进行训练,然后会收到若干行代码,它们可以直接嵌入应用程序,不需建立数据中心,甚至用像“亚马逊网络服务”这样的公共云,所有的一切MetaMind全能搞定。

MetaMind网站上还有很多这样的演示,有的可以指出两个句子在语义上是多么相近,有的能就用户搜索的某一主题词显示推文的肯定或否定程度。MetaMind还可以形成一个分类器:用户上传一个带有文本标签的电子表格,使系统知道要搜索什么,然后再给它一些文本,让它进行动态分析。

只要用一组相关图片进行训练,MetaMind还能对图像进行分类。当它“消化”了一些食物图片之后,你可以拖拽一盘鱼或者薯片的照片,它可以很自信地说出图片里是鱼或者薯片。

Socher还演示了MetaMind如何提取与文本框中输入的文字相匹配的图像。

或是输入几个词

Socher用笔记本电脑输入了“鸟”(bird)这个词,系统展示了一些图像,每张都有一只鸟。然后他输入了鸟的复数形式(birds),图像发生了变化,每张上都有很多只鸟。他说:“最酷的是它真的具有语义合成的感觉——词汇如何组成了较长语句的意义。”他键入“水上的鸟”,然后系统给出了鸟在水上飞翔的图片。

这种工作要求多种类型的“深度学习”,“卷积神经网络”在扫描大量图像之后能够提取特征,而“递归神经网络”能从句子中提取意义,这两项技术可以协同工作。Google和微软最近分别宣布他们已经掌握了一次性处理文字和图像的技术,但是Socher去年独立完成了这项研究,并在今年2月发表了两篇论文。他说:“我们拥有这项技术已经有几个月了。”

Socher走过了一条漫长的道路,他是德国人,大学期间他研究自然语言处理(NLP),但是他觉得其中数学的成分太少了,因此研究生阶段他开始研究计算机视觉,虽然数学的成分多了,但是仍不完美,因为那太简单了。随后他去美国读博士,在斯坦福大学专攻机器学习。在那里他听了Andrew Ng教授关于“深度学习”及其在计算机视觉中的应用的报告。

“我觉得那是非常棒的想法,但是它们仍然不太适合自然语言处理,”索赫尔说,“我创造了一些‘深度学习’的新模式,可以应用于自然语言的处理。”

他的“递归神经网络”分析相邻两个词之间的关联,然后它再分析这两个词和它们左边那个词的联系,以此类推,“递归”这个词的意思就是直到它能理解一句话中所有的语言成分的意义。

2011年他首次提出了这些模型,在学术界引发了兴趣,之后他发表了数篇论文来证明“递归神经网络”的可行性。

他曾想从事研究工作,但是今年初,他意识到他不想走这条路。

作为斯坦福大学“机器学习”课程300多名学生的助教,Socher看到大家很想把这种技术应用于所有的数据类型。

“每五分钟就有一个完全不同领域的新项目,”他说,“我喜欢这样,机器学习前景广阔,而且它的重要性将进一步显现。”

几年来,他拒绝了大公司提供的工作邀请,他想把这些技术带入更广阔的领域,让更多的个人和企业能够使用。

创立企业

他需要资金建立团队来实现这些想法,最后他去了Khosla风投,见到了这家公司的首席技术官Sven Strohband。现在,Strohband已经加入MetaMind担任首席执行官。

同时,Khosla风投的创始人Vinod Khosla(也是Sun Microsystems的联合创始人)担任这家初创公司的顾问,Salesforce网的首席执行官贝尼奥夫和蒙特利尔大学该领域领军人物Yoshua Bengio都加入了公司高层。

MetaMind已经建立了一个10人团队,并且开始吸引付费用户,他们为小企业提供服务,也为财富500强的大企业工作。他们为在企业数据中心运行的MetaMind系统发放许可证,还可以为使用MetaMind动力系统的公司提供额外的咨询服务。

具体业务包括抽取财务分析报告中隐藏的关键词,或分析人们寻求客服帮助的聊天记录。更丰富的应用还有根据X光片预测病情等。

虽然MetaMind已经有很多此类应用,但是他们还在征集新的项目,显示出开放的心态,目的是想让世界告诉他们什么才是最好的选择,这对一个初创公司来说是非常正确的。

Strohband说:“我们相信它应该为更多人所用,因为我们认为它有很多用途,坦率的说我们真的无法预料人们会用它还干什么。”