欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python人脸识别第三方库face_recognition接口说明文档

程序员文章站 2022-10-14 22:06:36
1. 查找图像中出现的人脸 代码示例: #导入face_recognition模块 import face_recognition #将j...

1. 查找图像中出现的人脸

代码示例:

#导入face_recognition模块

import face_recognition

#将jpg文件加载到numpy数组中

image = face_recognition.load_image_file(“your_file.jpg”)

#查找图片中人脸(上下左右)的位置,图像中可能有多个人脸 

#face_locations的值类似[(135,536,198,474),()]

face_locations = face_recognition.face_locations(image);

# 使用cnn模型 准确率高

face_locations = face_recognition.face_locations(image, number_of_times_to_upsample=0, model="cnn")

face_locations = face_recognition.face_locations(small_frame, model="cnn")

2. 获取图像中人脸的眼睛、鼻子、嘴、下巴、眉毛的位置和轮廓

代码示例:

import face_recognition

image = face_recognition.load_image_file(“your_file.jpg”)

#查找图片中人脸的所有面部特征(眉毛,眼睛,鼻子,上下嘴唇,面部轮廓)

#face_landmarks_list是个二维数组

face_landmarks_list = face_recognition.face_landmarks(image)

3. 识别图像中出现的人脸 

import face_recognition

known_image = face_recognition.load_image_file(“biden.jpg”)

unknown_imag = face_recognition.load_image_file(“unknown.jpg”)

#获取每个图像文件中每个面部的面部编码

#由于每个图像中可能有多个人脸,所以返回一个编码列表。

#但是事先知道每个图像只有一个人脸,每个图像中的第一个编码,取索引0。

biden_encoding =face_recognition.face_encodings(known_image)[0]

unknown_encoding=face_recognition.face_encodings(unknown_image)[0]

#如果图像中有多个人脸 获取图像中多个人脸编码

face_locations = face_recognition.face_locations(unknow_image)

face_encodings = face_recognition.face_encodings(unknown_image, face_locations)

#结果是true/false的数组,未知面孔known_faces阵列中的任何人相匹配的结果 

#[true, false,false]

results=face_recognition.compare_faces([biden_encoding],unknown_encoding)

#结果是true/false的数组,未知面孔known_faces阵列中的任何人相匹配的结果 设定比对结果的阀值

#[true, false,false]

 match = face_recognition.compare_faces(known_faces, face_encoding, tolerance=0.50)

4.两个人脸的相似度

#结果是小于1的值 例如0.5 0.7等

face_distances = face_recognition.face_distance(known_encodings, image_to_test_encoding)

设定阀值 05或者0.6等

face_distances < 阀值

更多关于face_recognition库的介绍请查看以下链接