欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

关于tf.nn.dynamic_rnn返回值详解

程序员文章站 2022-10-11 20:52:36
函数原型 tf.nn.dynamic_rnn( cell, inputs, sequence_length=none, initial_state=n...

函数原型

tf.nn.dynamic_rnn(
  cell,
  inputs,
  sequence_length=none,
  initial_state=none,
  dtype=none,
  parallel_iterations=none,
  swap_memory=false,
  time_major=false,
  scope=none
)

实例讲解:

import tensorflow as tf
import numpy as np
 
n_steps = 2
n_inputs = 3
n_neurons = 5
 
x = tf.placeholder(tf.float32, [none, n_steps, n_inputs])
basic_cell = tf.contrib.rnn.basicrnncell(num_units=n_neurons)
 
seq_length = tf.placeholder(tf.int32, [none])
outputs, states = tf.nn.dynamic_rnn(basic_cell, x, dtype=tf.float32,
                  sequence_length=seq_length)
 
init = tf.global_variables_initializer()
 
x_batch = np.array([
    # step 0   step 1
    [[0, 1, 2], [9, 8, 7]], # instance 1
    [[3, 4, 5], [0, 0, 0]], # instance 2 (padded with zero vectors)
    [[6, 7, 8], [6, 5, 4]], # instance 3
    [[9, 0, 1], [3, 2, 1]], # instance 4
  ])
seq_length_batch = np.array([2, 1, 2, 2])
 
with tf.session() as sess:
  init.run()
  outputs_val, states_val = sess.run(
    [outputs, states], feed_dict={x: x_batch, seq_length: seq_length_batch})
  print("outputs_val.shape:", outputs_val.shape, "states_val.shape:", states_val.shape)
  print("outputs_val:", outputs_val, "states_val:", states_val)

log info:

outputs_val.shape: (4, 2, 5) states_val.shape: (4, 5)
outputs_val: 
[[[ 0.53073734 -0.61281306 -0.5437517  0.7320347 -0.6109526 ]
 [ 0.99996936 0.99990636 -0.9867181  0.99726075 -0.99999976]]
 
 [[ 0.9931584  0.5877845 -0.9100412  0.988892  -0.9982337 ]
 [ 0.     0.     0.     0.     0.    ]]
 
 [[ 0.99992317 0.96815354 -0.985101  0.9995968 -0.9999936 ]
 [ 0.99948144 0.9998127 -0.57493806 0.91015154 -0.99998355]]
 
 [[ 0.99999255 0.9998929  0.26732785 0.36024097 -0.99991137]
 [ 0.98875254 0.9922327  0.6505734  0.4732064 -0.9957567 ]]] 
states_val:
 [[ 0.99996936 0.99990636 -0.9867181  0.99726075 -0.99999976]
 [ 0.9931584  0.5877845 -0.9100412  0.988892  -0.9982337 ]
 [ 0.99948144 0.9998127 -0.57493806 0.91015154 -0.99998355]
 [ 0.98875254 0.9922327  0.6505734  0.4732064 -0.9957567 ]]

首先输入x是一个 [batch_size,step,input_size] = [4,2,3] 的tensor,注意我们这里调用的是basicrnncell,只有一层循环网络,outputs是最后一层每个step的输出,它的结构是[batch_size,step,n_neurons] = [4,2,5],states是每一层的最后那个step的输出,由于本例中,我们的循环网络只有一个隐藏层,所以它就代表这一层的最后那个step的输出,因此它和step的大小是没有关系的,我们的x有4个样本组成,输出神经元大小n_neurons是5,因此states的结构就是[batch_size,n_neurons] = [4,5],最后我们观察数据,states的每条数据正好就是outputs的最后一个step的输出。

下面我们继续讲解多个隐藏层的情况,这里是三个隐藏层,注意我们这里仍然是调用basicrnncell

import tensorflow as tf
import numpy as np
 
n_steps = 2
n_inputs = 3
n_neurons = 5
n_layers = 3
 
x = tf.placeholder(tf.float32, [none, n_steps, n_inputs])
seq_length = tf.placeholder(tf.int32, [none])
 
layers = [tf.contrib.rnn.basicrnncell(num_units=n_neurons,
                   activation=tf.nn.relu)
     for layer in range(n_layers)]
multi_layer_cell = tf.contrib.rnn.multirnncell(layers)
outputs, states = tf.nn.dynamic_rnn(multi_layer_cell, x, dtype=tf.float32, sequence_length=seq_length)
 
init = tf.global_variables_initializer()
 
x_batch = np.array([
    # step 0   step 1
    [[0, 1, 2], [9, 8, 7]], # instance 1
    [[3, 4, 5], [0, 0, 0]], # instance 2 (padded with zero vectors)
    [[6, 7, 8], [6, 5, 4]], # instance 3
    [[9, 0, 1], [3, 2, 1]], # instance 4
  ])
 
seq_length_batch = np.array([2, 1, 2, 2])
 
with tf.session() as sess:
  init.run()
  outputs_val, states_val = sess.run(
    [outputs, states], feed_dict={x: x_batch, seq_length: seq_length_batch})
  print("outputs_val.shape:", outputs, "states_val.shape:", states)
  print("outputs_val:", outputs_val, "states_val:", states_val)

log info:

outputs_val.shape: 
tensor("rnn/transpose_1:0", shape=(?, 2, 5), dtype=float32) 
 
states_val.shape: 
(<tf.tensor 'rnn/while/exit_3:0' shape=(?, 5) dtype=float32>, 
 <tf.tensor 'rnn/while/exit_4:0' shape=(?, 5) dtype=float32>, 
 <tf.tensor 'rnn/while/exit_5:0' shape=(?, 5) dtype=float32>)
 
outputs_val:
 [[[0.     0.     0.     0.     0.    ]
 [0.     0.18740742 0.     0.2997518 0.    ]]
 
 [[0.     0.07222144 0.     0.11551574 0.    ]
 [0.     0.     0.     0.     0.    ]]
 
 [[0.     0.13463384 0.     0.21534224 0.    ]
 [0.03702604 0.18443246 0.     0.34539366 0.    ]]
 
 [[0.     0.54511094 0.     0.8718864 0.    ]
 [0.5382122 0.     0.04396425 0.4040263 0.    ]]] 
 
states_val:
 (array([[0.    , 0.83723307, 0.    , 0.    , 2.8518028 ],
    [0.    , 0.1996038 , 0.    , 0.    , 1.5456247 ],
    [0.    , 1.1372368 , 0.    , 0.    , 0.832613 ],
    [0.    , 0.7904129 , 2.4675028 , 0.    , 0.36980057]],
   dtype=float32), 
 array([[0.6524607 , 0.    , 0.    , 0.    , 0.    ],
    [0.25143963, 0.    , 0.    , 0.    , 0.    ],
    [0.5010576 , 0.    , 0.    , 0.    , 0.    ],
    [0.    , 0.3166597 , 0.4545995 , 0.    , 0.    ]],
   dtype=float32), 
 array([[0.    , 0.18740742, 0.    , 0.2997518 , 0.    ],
    [0.    , 0.07222144, 0.    , 0.11551574, 0.    ],
    [0.03702604, 0.18443246, 0.    , 0.34539366, 0.    ],
    [0.5382122 , 0.    , 0.04396425, 0.4040263 , 0.    ]],
   dtype=float32))

我们说过,outputs是最后一层的输出,即 [batch_size,step,n_neurons] = [4,2,5]

states是每一层的最后一个step的输出,即三个结构为 [batch_size,n_neurons] = [4,5] 的tensor

继续观察数据,states中的最后一个array,正好是outputs的最后那个step的输出

下面我们继续讲当由basiclstmcell构造单元工厂的时候,只讲多层的情况,我们只需要将上面的basicrnncell替换成basiclstmcell就行了,打印信息如下:

outputs_val.shape: 
tensor("rnn/transpose_1:0", shape=(?, 2, 5), dtype=float32) 
 
states_val.shape:
(lstmstatetuple(c=<tf.tensor 'rnn/while/exit_3:0' shape=(?, 5) dtype=float32>, 
        h=<tf.tensor 'rnn/while/exit_4:0' shape=(?, 5) dtype=float32>), 
lstmstatetuple(c=<tf.tensor 'rnn/while/exit_5:0' shape=(?, 5) dtype=float32>, 
        h=<tf.tensor 'rnn/while/exit_6:0' shape=(?, 5) dtype=float32>), 
lstmstatetuple(c=<tf.tensor 'rnn/while/exit_7:0' shape=(?, 5) dtype=float32>, 
        h=<tf.tensor 'rnn/while/exit_8:0' shape=(?, 5) dtype=float32>))
 
outputs_val: 
[[[1.2949290e-04 0.0000000e+00 2.7623639e-04 0.0000000e+00 0.0000000e+00]
 [9.4675866e-05 0.0000000e+00 2.0214770e-04 0.0000000e+00 0.0000000e+00]]
 
 [[4.3100454e-06 4.2123037e-07 1.4312843e-06 0.0000000e+00 0.0000000e+00]
 [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]]
 
 [[0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]
 [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]]
 
 [[0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]
 [0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00]]] 
 
states_val: 
(lstmstatetuple(
c=array([[0.    , 0.    , 0.04676079, 0.04284539, 0.    ],
    [0.    , 0.    , 0.0115245 , 0.    , 0.    ],
    [0.    , 0.    , 0.    , 0.    , 0.    ],
    [0.    , 0.    , 0.    , 0.    , 0.    ]],
   dtype=float32), 
h=array([[0.    , 0.    , 0.00035096, 0.04284406, 0.    ],
    [0.    , 0.    , 0.00142574, 0.    , 0.    ],
    [0.    , 0.    , 0.    , 0.    , 0.    ],
    [0.    , 0.    , 0.    , 0.    , 0.    ]],
   dtype=float32)), 
lstmstatetuple(
c=array([[0.0000000e+00, 1.0477135e-02, 4.9871090e-03, 8.2785974e-04,
    0.0000000e+00],
    [0.0000000e+00, 2.3306280e-04, 0.0000000e+00, 9.9445322e-05,
    5.9535629e-05],
    [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
    0.0000000e+00],
    [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
    0.0000000e+00]], dtype=float32), 
h=array([[0.00000000e+00, 5.23016974e-03, 2.47756205e-03, 4.11730434e-04,
    0.00000000e+00],
    [0.00000000e+00, 1.16522635e-04, 0.00000000e+00, 4.97301044e-05,
    2.97713632e-05],
    [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
    0.00000000e+00],
    [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
    0.00000000e+00]], dtype=float32)), 
lstmstatetuple(
c=array([[1.8937115e-04, 0.0000000e+00, 4.0442235e-04, 0.0000000e+00,
    0.0000000e+00],
    [8.6200516e-06, 8.4243663e-07, 2.8625946e-06, 0.0000000e+00,
    0.0000000e+00],
    [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
    0.0000000e+00],
    [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
    0.0000000e+00]], dtype=float32), 
h=array([[9.4675866e-05, 0.0000000e+00, 2.0214770e-04, 0.0000000e+00,
    0.0000000e+00],
    [4.3100454e-06, 4.2123037e-07, 1.4312843e-06, 0.0000000e+00,
    0.0000000e+00],
    [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
    0.0000000e+00],
    [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, 0.0000000e+00,
    0.0000000e+00]], dtype=float32)))

我们先看看lstm单元的结构

关于tf.nn.dynamic_rnn返回值详解

如果您不查看框内的内容,lstm单元看起来与常规单元格完全相同,除了它的状态分为两个向量:h(t)和c(t)。你可以将h(t)视为短期状态,将c(t)视为长期状态。

因此我们的states包含三个lstmstatetuple,每一个表示每一层的最后一个step的输出,这个输出有两个信息,一个是h表示短期记忆信息,一个是c表示长期记忆信息。维度都是[batch_size,n_neurons] = [4,5],states的最后一个lstmstatetuple中的h就是outputs的最后一个step的输出

以上这篇关于tf.nn.dynamic_rnn返回值详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。