活字印刷—Python递归与迭代解法
活字印刷
你有一套活字字模 tiles,其中每个字模上都刻有一个字母 tiles[i]。返回你可以印出的非空字母序列的数目。
注意:本题中,每个活字字模只能使用一次。
示例 1:
输入:“AAB”
输出:8
解释:可能的序列为 “A”, “B”, “AA”, “AB”, “BA”, “AAB”, “ABA”, “BAA”。
示例 2:
输入:“AAABBC”
输出:188
提示:
1 <= tiles.length <= 7
tiles 由大写英文字母组成
2. 求字母序列数目的Python代码
2.1 递归
def numTilePossibilities(tiles): result = 0 for i in set(tiles): result += 1 + numTilePossibilities(tiles.replace(i, '', 1)) return result print(numTilePossibilities('AAB')) print(numTilePossibilities('AABC')) print(numTilePossibilities('AAABBC'))
实验结果:
8
34
188
代码解读:
函数numTilePossibilities是一个递归函数,参数tiles代表活字字模上的字母组成的字符串,返回值result代表使用tiles中的字母能够排列出多少种字符串。
递归子问题:从tiles中拿出1个字母i后,使用剩余字母能够排列出多少种字符串。该问题在代码中表达为:numTilePossibilities(tiles.replace(i, '', 1))
。
若剩余字母排列出的字符串都加一个前缀i,即可得到一批新的字符串。由此可得,以字母i为前缀的字符串(包括字母i本身)共有1 + numTilePossibilities(tiles.replace(i, '', 1))
种。
通过for i in set(tiles):
遍历tiles去重后的字母集合,并使用result累计以不同字母为前缀的字符串的数目。
2.2 迭代
def numTilePossibilities(tiles): result = 0 stack = [tiles] while stack: tiles = stack.pop() for i in set(tiles): result += 1 stack.append(tiles.replace(i, '', 1)) return result print(numTilePossibilities('AAB')) print(numTilePossibilities('AABC')) print(numTilePossibilities('AAABBC'))
实验结果:
8
34
188
3. 求字母序列的Python代码
3.1 递归
递归代码对解空间树的搜索是深度优先搜索(depth first search, dfs)。
def numTilePossibilities(tiles): result = [] def dfs(tiles, prefix): for i in sorted(set(tiles)): result.append(prefix+i) dfs(tiles.replace(i, '', 1), prefix+i) dfs(tiles, '') return result print(numTilePossibilities('AAB')) print(numTilePossibilities('AABC'))
实验结果:
[‘A’, ‘AA’, ‘AAB’, ‘AB’, ‘ABA’, ‘B’, ‘BA’, ‘BAA’]
[‘A’, ‘AA’, ‘AAB’, ‘AABC’, ‘AAC’, ‘AACB’, ‘AB’, ‘ABA’, ‘ABAC’, ‘ABC’, ‘ABCA’, ‘AC’, ‘ACA’, ‘ACAB’, ‘ACB’, ‘ACBA’, ‘B’, ‘BA’, ‘BAA’, ‘BAAC’, ‘BAC’, ‘BACA’, ‘BC’, ‘BCA’, ‘BCAA’, ‘C’, ‘CA’, ‘CAA’, ‘CAAB’, ‘CAB’, ‘CABA’, ‘CB’, ‘CBA’, ‘CBAA’]
3.2 迭代(栈,深度优先搜索)
本迭代代码通过栈实现了对解空间树的深度优先搜索。
def numTilePossibilities(tiles): result = [] stack = [(tiles, '')] while stack: tiles, prefix = stack.pop() result.append(prefix) for i in sorted(set(tiles), reverse=True): stack.append((tiles.replace(i, '', 1), prefix+i)) return result[1:] print(numTilePossibilities('AAB')) print(numTilePossibilities('AABC'))
实验结果:
[‘A’, ‘AA’, ‘AAB’, ‘AB’, ‘ABA’, ‘B’, ‘BA’, ‘BAA’]
[‘A’, ‘AA’, ‘AAB’, ‘AABC’, ‘AAC’, ‘AACB’, ‘AB’, ‘ABA’, ‘ABAC’, ‘ABC’, ‘ABCA’, ‘AC’, ‘ACA’, ‘ACAB’, ‘ACB’, ‘ACBA’, ‘B’, ‘BA’, ‘BAA’, ‘BAAC’, ‘BAC’, ‘BACA’, ‘BC’, ‘BCA’, ‘BCAA’, ‘C’, ‘CA’, ‘CAA’, ‘CAAB’, ‘CAB’, ‘CABA’, ‘CB’, ‘CBA’, ‘CBAA’]
3.3 迭代(栈)
def numTilePossibilities(tiles): result = [] stack = [(tiles, '')] while stack: tiles, prefix = stack.pop() for i in sorted(set(tiles)): result.append(prefix+i) stack.append((tiles.replace(i, '', 1), prefix+i)) return result print(numTilePossibilities('AAB')) print(numTilePossibilities('AABC'))
实验结果:
[‘A’, ‘B’, ‘BA’, ‘BAA’, ‘AA’, ‘AB’, ‘ABA’, ‘AAB’]
[‘A’, ‘B’, ‘C’, ‘CA’, ‘CB’, ‘CBA’, ‘CBAA’, ‘CAA’, ‘CAB’, ‘CABA’, ‘CAAB’, ‘BA’, ‘BC’, ‘BCA’, ‘BCAA’, ‘BAA’, ‘BAC’, ‘BACA’, ‘BAAC’, ‘AA’, ‘AB’, ‘AC’, ‘ACA’, ‘ACB’, ‘ACBA’, ‘ACAB’, ‘ABA’, ‘ABC’, ‘ABCA’, ‘ABAC’, ‘AAB’, ‘AAC’, ‘AACB’, ‘AABC’]
3.4 迭代(队列)
本迭代代码通过队列实现了对解空间树的广度优先搜索(breadth first search, bfs)。
def numTilePossibilities(tiles): result = [] queue = [(tiles, '')] while queue: tiles, prefix = queue.pop(0) for i in sorted(set(tiles)): result.append(prefix+i) queue.append((tiles.replace(i, '', 1), prefix+i)) return result print(numTilePossibilities('AAB')) print(numTilePossibilities('AABC'))
实验结果:
[‘A’, ‘B’, ‘AA’, ‘AB’, ‘BA’, ‘AAB’, ‘ABA’, ‘BAA’]
[‘A’, ‘B’, ‘C’, ‘AA’, ‘AB’, ‘AC’, ‘BA’, ‘BC’, ‘CA’, ‘CB’, ‘AAB’, ‘AAC’, ‘ABA’, ‘ABC’, ‘ACA’, ‘ACB’, ‘BAA’, ‘BAC’, ‘BCA’, ‘CAA’, ‘CAB’, ‘CBA’, ‘AABC’, ‘AACB’, ‘ABAC’, ‘ABCA’, ‘ACAB’, ‘ACBA’, ‘BAAC’, ‘BACA’, ‘BCAA’, ‘CAAB’, ‘CABA’, ‘CBAA’]
本文地址:https://blog.csdn.net/weixin_43918780/article/details/108256263
下一篇: 广州百万葵园门票多少钱 附游玩攻略