欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)

程序员文章站 2022-10-06 18:58:57
题意 "题目链接" Sol 复习一下01分数规划 设$a_i$为点权,$b_i$为边权,我们要最大化$\sum \frac{a_i}{b_i}$。可以二分一个答案$k$,我们需要检查$\sum \frac{a_i}{b_i} \geqslant k$是否合法,移向之后变为$\sum_{a_i} k\ ......

题意

题目链接

sol

复习一下01分数规划

\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\)。可以二分一个答案\(k\),我们需要检查\(\sum \frac{a_i}{b_i} \geqslant k\)是否合法,移向之后变为\(\sum_{a_i} - k\sum_{b_i} \geqslant 0\)。把\(k * b_i\)加在出发点的点权上检查一下有没有负环就行了

#include<bits/stdc++.h> 
#define pair pair<int, double>
#define mp(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long 
#define ll long long 
#define fin(x) {freopen(#x".in","r",stdin);}
#define fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int maxn = 4001, mod = 998244353, inf = 2e9 + 10;
const double eps = 1e-9;
template <typename a, typename b> inline bool chmin(a &a, b b){if(a > b) {a = b; return 1;} return 0;}
template <typename a, typename b> inline bool chmax(a &a, b b){if(a < b) {a = b; return 1;} return 0;}
template <typename a, typename b> inline ll add(a x, b y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename a, typename b> inline void add2(a &x, b y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename a, typename b> inline ll mul(a x, b y) {return 1ll * x * y % mod;}
template <typename a, typename b> inline void mul2(a &x, b y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename a> inline void debug(a a){cout << a << '\n';}
template <typename a> inline ll sqr(a x){return 1ll * x * x;}
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int n, m;
vector<pair> v[maxn];
double a[maxn], dis[maxn];
int vis[maxn], times[maxn];
bool spfa(int s,  double k) {
    queue<int> q; q.push(s);
    for(int i = 1; i <= n; i++) vis[i] = 0, times[i] = 0, dis[i] = 0;
    times[s]++;
    while(!q.empty()) {
        int p = q.front(); q.pop(); vis[p] = 0;
        for(auto &sta : v[p]) {
            int to = sta.fi; double w = sta.se;
            if(chmax(dis[to], dis[p] + a[p] - k * w)) {
                if(!vis[to]) q.push(to), vis[to] = 1, times[to]++;
                if(times[to] > n) return 1;
            }
        }
    }
    return 0;
}
bool check(double val) {
    for(int i = 1; i <= n; i++)
        if(spfa(i, val)) return 1;
    return 0;
}
signed main() {
    n = read(); m = read();
    for(int i = 1; i <= n; i++) a[i] = read();
    for(int i = 1; i <= m; i++) {
        int x = read(), y = read(), z = read();
        v[x].push_back({y, z});
    }
    double l = -1e9, r = 1e9;
    while(r - l > eps) {
        double mid = (l + r) / 2;
        if(check(mid)) l = mid;
        else r = mid;
    }
    printf("%.2lf", l);
    return 0;
}