欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

洛谷P4841 城市规划(生成函数 多项式求逆)

程序员文章站 2022-10-06 14:13:29
题意 "链接" Sol Orz yyb 一开始想的是直接设$f_i$表示$i$个点的无向联通图个数,枚举最后一个联通块转移,发现有一种情况转移不到。。。 正解是先设$g(n)$表示$n$个点的 无向图 个数,这个方案是$2^{\frac{i(i 1)}{2}}$(也就是考虑每条边选不选) 考虑如何得 ......

题意

链接

sol

orz yyb

一开始想的是直接设\(f_i\)表示\(i\)个点的无向联通图个数,枚举最后一个联通块转移,发现有一种情况转移不到。。。

正解是先设\(g(n)\)表示\(n\)个点的无向图个数,这个方案是\(2^{\frac{i(i-1)}{2}}\)(也就是考虑每条边选不选)

考虑如何得到\(g\)

\[g(n) = \sum_{i=0}^n c_{n-1}^{i-1}f(i) g(n-i)\]

直接将\(2^{\frac{n(n-1)}{2}}\)带入然后化简一下可以得到这个式子

\[\frac{2^{c_n^2}}{(n-1)!} = \sum_{i=1}^n \frac{f(i)}{(i-1)!} \frac{2^{c_{n-i}^2}}{(n-i)!}\]

然后就可以多项式求逆啦。

#include<bits/stdc++.h> 
#define pair pair<int, int>
#define mp(x, y) make_pair(x, y)
#define fi first
#define se second
#define ll long long 
#define ull unsigned long long 
#define fin(x) {freopen(#x".in","r",stdin);}
#define fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int maxn = 2e6 + 10, inf = 1e9 + 1;
const double eps = 1e-9, pi = acos(-1);
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int n, m, a[maxn], b[maxn], c[maxn], d[maxn], fac[maxn], ifac[maxn];
namespace poly {
    int rev[maxn], gpow[maxn], a[maxn], b[maxn], c[maxn], lim, inv2;
    const int g = 3, mod = 1004535809, mod2 = 1004535808;
    template <typename a, typename b> inline ll add(a x, b y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
    template <typename a, typename b> inline void add2(a &x, b y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
    template <typename a, typename b> inline ll mul(a x, b y) {return 1ll * x * y % mod;}
    template <typename a, typename b> inline void mul2(a &x, b y) {x = (1ll * x * y % mod + mod) % mod;}
    int fp(int a, int p, int p = mod) {
        int base = 1;
        for(; p > 0; p >>= 1, a = 1ll * a * a % p) if(p & 1) base = 1ll * base *  a % p;
        return base;
    }
    int inv(int x) {
        return fp(x, mod - 2);
    }
    int getlen(int x) {
        int lim = 1;
        while(lim <= x) lim <<= 1;
        return lim;
    }
    int getorigin(int x) {//¼æëãô­¸ù 
        static int q[maxn]; int tot = 0, tp = x - 1;
        for(int i = 2; i * i <= tp; i++) if(!(tp % i)) {q[++tot] = i;while(!(tp % i)) tp /= i;}
        if(tp > 1) q[++tot] = tp;
        for(int i = 2, j; i <= x - 1; i++) {
            for(j = 1; j <= tot; j++) if(fp(i, (x - 1) / q[j], x) == 1) break;
            if(j == tot + 1) return i;
        }
        return -1;
    }
    void init(/*int p,*/ int lim) {
        inv2 = fp(2, mod - 2);
        for(int i = 1; i <= lim; i++) gpow[i] = fp(g, (mod - 1) / i);
    }
    void ntt(int *a, int lim, int opt) {
        int len = 0; for(int n = 1; n < lim; n <<= 1) ++len; 
        for(int i = 1; i <= lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len - 1));
        for(int i = 0; i <= lim; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
        for(int mid = 1; mid < lim; mid <<= 1) {
            int wn = gpow[mid << 1];
            for(int i = 0; i < lim; i += (mid << 1)) {
                for(int j = 0, w = 1; j < mid; j++, w = mul(w, wn)) {
                    int x = a[i + j], y = mul(w, a[i + j + mid]);
                    a[i + j] = add(x, y), a[i + j + mid] = add(x, -y);
                }
            }
        }
        if(opt == -1) {
            reverse(a + 1, a + lim);
            int inv = fp(lim, mod - 2);
            for(int i = 0; i <= lim; i++) mul2(a[i], inv);
        }
    }
    void mul(int *a, int *b, int n, int m) {
        memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b));
        int lim = 1, len = 0; 
        while(lim <= n + m) len++, lim <<= 1;
        for(int i = 0; i <= n; i++) a[i] = a[i]; 
        for(int i = 0; i <= m; i++) b[i] = b[i];
        ntt(a, lim, 1); ntt(b, lim, 1);
        for(int i = 0; i <= lim; i++) b[i] = mul(b[i], a[i]);
        ntt(b, lim, -1);
        for(int i = 0; i <= n + m; i++) b[i] = b[i];
        memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b));
    }
    void inv(int *a, int *b, int len) {//b1 = 2b - a1 * b^2 
        if(len == 1) {b[0] = fp(a[0], mod - 2); return ;}
        inv(a, b, len >> 1);
        for(int i = 0; i < len; i++) a[i] = a[i], b[i] = b[i];
        ntt(a, len << 1, 1); ntt(b, len << 1, 1);
        for(int i = 0; i < (len << 1); i++) mul2(a[i], mul(b[i], b[i]));
        ntt(a, len << 1, -1);
        for(int i = 0; i < len; i++) add2(b[i], add(b[i], -a[i]));
        for(int i = 0; i < (len << 1); i++) a[i] = b[i] = 0;
    }
    void dao(int *a, int *b, int len) {
        for(int i = 1; i < len; i++) b[i - 1] = mul(i, a[i]); b[len - 1] = 0;
    }
    void ji(int *a, int *b, int len) {
        for(int i = 1; i < len; i++) b[i] = mul(a[i - 1], fp(i, mod - 2)); b[0] = 0;
    }
    void ln(int *a, int *b, int len) {//g(a) = \frac{a}{a'} qiudao zhihou jifen 
        static int a[maxn], b[maxn];
        dao(a, a, len); 
        inv(a, b, len);
        ntt(a, len << 1, 1); ntt(b, len << 1, 1);
        for(int i = 0; i < (len << 1); i++) b[i] = mul(a[i], b[i]);
        ntt(b, len << 1, -1); 
        ji(b, b, len << 1);
        memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b));
    }
    void exp(int *a, int *b, int len) {//f(x) = f_0 (1 - lnf_0 + a) but code ..why....
        if(len == 1) return (void) (b[0] = 1);
        exp(a, b, len >> 1); ln(b, c, len);
        c[0] = add(a[0] + 1, -c[0]);
        for(int i = 1; i < len; i++) c[i] = add(a[i], -c[i]);
        ntt(c, len << 1, 1); ntt(b, len << 1, 1);
        for(int i = 0; i < (len << 1); i++) mul2(b[i], c[i]);
        ntt(b, len << 1, -1);
        for(int i = len; i < (len << 1); i++) c[i] = b[i] = 0;
    }
    void sqrt(int *a, int *b, int len) {
        static int b[maxn];
        ln(a, b, len);
        for(int i = 0; i < len; i++) b[i] = mul(b[i], inv2);
        exp(b, b, len); 
    }
};
using namespace poly; 

signed main() {
    n = read(); int lim = getlen(n); init(4 * lim);
    fac[0] = 1;
    for(int i = 1; i <= n; i++) fac[i] = mul(i, fac[i - 1]);
    ifac[n] = fp(fac[n], mod - 2);
    for(int i = n; i >= 1; i--) ifac[i - 1] = mul(i, ifac[i]);
    for(int i = n; i >= 1; i--) {
        int tmp;
        if(i & 1) tmp = fp(2, 1ll * ((i - 1) / 2) * i % mod2);
        else tmp = fp(2, 1ll * (i / 2) * (i - 1) % mod2);
        a[i] = mul(tmp, ifac[i - 1]),
        b[i] = mul(tmp, ifac[i]);
    }
    b[0] = 1;
    inv(b, c, lim);
    mul(a, c, lim, lim);
    cout << mul(c[n], fac[n - 1]);
    return 0;
}