欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

loj#6436. 「PKUSC2018」神仙的游戏(生成函数)

程序员文章站 2022-10-06 14:02:24
题意 "链接" Sol 生成函数题都好神仙啊qwq 我们考虑枚举一个长度$len$。有一个结论是如果我们按$N len$的余数分类,若同一组内的全为$0$或全为$1$(?不算),那么存在一个长度为$len$的border。 有了这个结论后我们考虑这样一种做法:把序列看成两个串$a, b$,若$a_i ......

题意

sol

生成函数题都好神仙啊qwq

我们考虑枚举一个长度\(len\)。有一个结论是如果我们按\(n - len\)的余数分类,若同一组内的全为\(0\)或全为\(1\)(?不算),那么存在一个长度为\(len\)的border。

有了这个结论后我们考虑这样一种做法:把序列看成两个串\(a, b\),若\(a_i = 0, b_j = 1\),那么对于所有的\(k | (|i - j|)\), \(n-k\)都不会成为答案。

考虑怎么快速算不合法的\((i, j)\)。对于多项式乘法得到的多项式的第\(k\)项,实际上是由所有的\(a_i * a_j(i+j=k)\)相乘得到的。我们把序列\(b\)翻转一下,这时候得到的第\(k\)项实际上就是由\(a_i * a_{n - j}\)得到的。

然后枚举一个数看一下他的倍数是否\(>0\)就行了

#include<bits/stdc++.h> 
#define pair pair<int, int>
#define mp(x, y) make_pair(x, y)
#define fi first
#define se second
#define ll long long 
#define ull unsigned long long 
#define fin(x) {freopen(#x".in","r",stdin);}
#define fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int maxn = 8e6 + 10, inf = 1e9 + 1;
const double eps = 1e-9, pi = acos(-1);
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int n, m, a[maxn], b[maxn], vis[maxn];
char s[maxn];
namespace poly {
    int rev[maxn], gpow[maxn], a[maxn], b[maxn], c[maxn], lim, inv2;
    const int g = 3, mod = 1004535809, mod2 = 1004535808;
    template <typename a, typename b> inline ll add(a x, b y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
    template <typename a, typename b> inline void add2(a &x, b y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
    template <typename a, typename b> inline ll mul(a x, b y) {return 1ll * x * y % mod;}
    template <typename a, typename b> inline void mul2(a &x, b y) {x = (1ll * x * y % mod + mod) % mod;}
    int fp(int a, int p, int p = mod) {
        int base = 1;
        for(; p > 0; p >>= 1, a = 1ll * a * a % p) if(p & 1) base = 1ll * base *  a % p;
        return base;
    }
    int inv(int x) {
        return fp(x, mod - 2);
    }
    int getlen(int x) {
        int lim = 1;
        while(lim <= x) lim <<= 1;
        return lim;
    }
    int getorigin(int x) {//¼æëãô­¸ù 
        static int q[maxn]; int tot = 0, tp = x - 1;
        for(int i = 2; i * i <= tp; i++) if(!(tp % i)) {q[++tot] = i;while(!(tp % i)) tp /= i;}
        if(tp > 1) q[++tot] = tp;
        for(int i = 2, j; i <= x - 1; i++) {
            for(j = 1; j <= tot; j++) if(fp(i, (x - 1) / q[j], x) == 1) break;
            if(j == tot + 1) return i;
        }
        return -1;
    }
    void init(/*int p,*/ int lim) {
        inv2 = fp(2, mod - 2);
        for(int i = 1; i <= lim; i++) gpow[i] = fp(g, (mod - 1) / i);
    }
    void ntt(int *a, int lim, int opt) {
        int len = 0; for(int n = 1; n < lim; n <<= 1) ++len; 
        for(int i = 1; i <= lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (len - 1));
        for(int i = 0; i <= lim; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
        for(int mid = 1; mid < lim; mid <<= 1) {
            int wn = gpow[mid << 1];
            for(int i = 0; i < lim; i += (mid << 1)) {
                for(int j = 0, w = 1; j < mid; j++, w = mul(w, wn)) {
                    int x = a[i + j], y = mul(w, a[i + j + mid]);
                    a[i + j] = add(x, y), a[i + j + mid] = add(x, -y);
                }
            }
        }
        if(opt == -1) {
            reverse(a + 1, a + lim);
            int inv = fp(lim, mod - 2);
            for(int i = 0; i <= lim; i++) mul2(a[i], inv);
        }
    }
    void mul(int *a, int *b, int n, int m) {
        memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b));
        int lim = 1, len = 0; 
        while(lim <= n + m) len++, lim <<= 1;
        for(int i = 0; i <= n; i++) a[i] = a[i]; 
        for(int i = 0; i <= m; i++) b[i] = b[i];
        ntt(a, lim, 1); ntt(b, lim, 1);
        for(int i = 0; i <= lim; i++) b[i] = mul(b[i], a[i]);
        ntt(b, lim, -1);
        for(int i = 0; i <= n + m; i++) b[i] = b[i];
        memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b));
    }
    void inv(int *a, int *b, int len) {//b1 = 2b - a1 * b^2 
        if(len == 1) {b[0] = fp(a[0], mod - 2); return ;}
        inv(a, b, len >> 1);
        for(int i = 0; i < len; i++) a[i] = a[i], b[i] = b[i];
        ntt(a, len << 1, 1); ntt(b, len << 1, 1);
        for(int i = 0; i < (len << 1); i++) mul2(a[i], mul(b[i], b[i]));
        ntt(a, len << 1, -1);
        for(int i = 0; i < len; i++) add2(b[i], add(b[i], -a[i]));
        for(int i = 0; i < (len << 1); i++) a[i] = b[i] = 0;
    }
    void dao(int *a, int *b, int len) {
        for(int i = 1; i < len; i++) b[i - 1] = mul(i, a[i]); b[len - 1] = 0;
    }
    void ji(int *a, int *b, int len) {
        for(int i = 1; i < len; i++) b[i] = mul(a[i - 1], fp(i, mod - 2)); b[0] = 0;
    }
    void ln(int *a, int *b, int len) {//g(a) = \frac{a}{a'} qiudao zhihou jifen 
        static int a[maxn], b[maxn];
        dao(a, a, len); 
        inv(a, b, len);
        ntt(a, len << 1, 1); ntt(b, len << 1, 1);
        for(int i = 0; i < (len << 1); i++) b[i] = mul(a[i], b[i]);
        ntt(b, len << 1, -1); 
        ji(b, b, len << 1);
        memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b));
    }
    void exp(int *a, int *b, int len) {//f(x) = f_0 (1 - lnf_0 + a) but code ..why....
        if(len == 1) return (void) (b[0] = 1);
        exp(a, b, len >> 1); ln(b, c, len);
        c[0] = add(a[0] + 1, -c[0]);
        for(int i = 1; i < len; i++) c[i] = add(a[i], -c[i]);
        ntt(c, len << 1, 1); ntt(b, len << 1, 1);
        for(int i = 0; i < (len << 1); i++) mul2(b[i], c[i]);
        ntt(b, len << 1, -1);
        for(int i = len; i < (len << 1); i++) c[i] = b[i] = 0;
    }
    void sqrt(int *a, int *b, int len) {
        static int b[maxn];
        ln(a, b, len);
        for(int i = 0; i < len; i++) b[i] = mul(b[i], inv2);
        exp(b, b, len); 
    }
};
using namespace poly; 
bool flag[maxn];
signed main() {
    scanf("%s", s);
    n = strlen(s); int lim = getlen(n); init(4 * lim);
    for(int i = 0; i < n; i++) a[i] = (s[i] == '0'), b[i] = (s[n - i - 1] == '1');
    mul(a, b, lim, lim);
    ll ans = 1ll * n * n;
    for(int i = 1; i <= n; i++) {
        ans ^= 1ll * (n - i) * (n - i);
        for(int j = i; j < n; j += i)
            if(b[n - j - 1] || b[n + j - 1]) 
                {ans ^= 1ll * (n - i) * (n - i); break;}
    }   
    cout << ans;
    return 0;
}