欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

[TextMatch框架] QA Match (QA匹配)

程序员文章站 2022-10-04 08:36:05
run examplesgit clone https://github.com/MachineLP/TextMatchcd TextMatchexport PYTHONPATH=${PYTHONPATH}:../TextMatchpython tests/core_test/qa_match_test.pyqa matchimport sysfrom textmatch.core.qa_match import QMatch, AMatch, SemanticMatchtest_dic...

run examples

git clone https://github.com/MachineLP/TextMatch
cd TextMatch
export PYTHONPATH=${PYTHONPATH}:../TextMatch
python tests/core_test/qa_match_test.py

qa match

import sys
from textmatch.core.qa_match import QMatch, AMatch, SemanticMatch

test_dict = {"id0": "其实事物发展有自己的潮流和规律",
   "id1": "当你身处潮流之中的时候,要紧紧抓住潮流的机会",
   "id2": "想办法脱颖而出,即使没有成功,也会更加洞悉时代的脉搏",
   "id3": "收获珍贵的知识和经验。而如果潮流已经退去",
   "id4": "这个时候再去往这个方向上努力,只会收获迷茫与压抑",
   "id5": "对时代、对自己都没有什么帮助",
   "id6": "但是时代的浪潮犹如海滩上的浪花,总是一浪接着一浪,只要你站在海边,身处这个行业之中,下一个浪潮很快又会到来。你需要敏感而又深刻地去观察,略去那些浮躁的泡沫,抓住真正潮流的机会,奋力一搏,不管成败,都不会遗憾。"}


def test_q_match(testword):
    # QMatch
    q_match = QMatch( q_dict=test_dict, match_models=['bow', 'tfidf', 'ngram_tfidf']) 
    q_match_pre = q_match.predict(testword, match_strategy='score', vote_threshold=0.5, key_weight = {'bow': 1, 'tfidf': 1, 'ngram_tfidf': 1})
    print ('q_match_pre>>>>>', q_match_pre )
    return q_match_pre

def test_a_match(testword):
    # AMatch
    a_match = AMatch( a_dict=test_dict, match_models=['bow', 'tfidf', 'ngram_tfidf']) 
    a_match_pre = a_match.predict(testword, ['id0', 'id1'], match_strategy='score', vote_threshold=0.5, key_weight = {'bow': 1, 'tfidf': 1, 'ngram_tfidf': 1}) 
    print ('a_match_pre>>>>>', a_match_pre )
    # a_match_pre>>>>> {'id0': 1.0, 'id1': 0.0} 
    return a_match_pre


def test_semantic_match(testword,words_dict=test_dict):
    # SemanticMatch
    s_match = SemanticMatch( words_dict=words_dict, match_models=['bow', 'tfidf', 'ngram_tfidf'] ) 
    s_match_pre = s_match.predict(testword, ['id0','id1', "id5"], match_strategy='score', vote_threshold=0.5, key_weight = {'bow': 1, 'tfidf': 1, 'ngram_tfidf': 1})
    print ('s_match_pre>>>>>', s_match_pre ) 
    # s_match_pre>>>>> {'id0': 1.0, 'id1': 0.0}
    return s_match_pre




if __name__ == '__main__':
    testword = "其实事物发展有自己的潮流和规律"
    test_q_match(testword)
    test_a_match(testword)
    test_semantic_match(testword)

基于关键词辅助

run examples

git clone https://github.com/MachineLP/TextMatch
cd TextMatch
export PYTHONPATH=${PYTHONPATH}:../TextMatch
python tests/core_test/qa_match_kw_test.py
import sys
from textmatch.core.qa_match_kw import QAMatchKW

res_dict={'id0':0.8, 'id1':0.3}

qkw_dict = {
    'id0': ['神仙水|神仙', '价格|多少钱'],
    'id1': ['海蓝之谜|lammer', '面霜', '功效|功能|作用'],
    'id2': ['快递']
    }

akw_dict = {
    'id0': ['799|七百九十九|七九九'],
    'id1': ['补水|祛斑'],
    'id2': ['顺丰']
    }

def test_qkw_match(testword):
    qkw_match = QAMatchKW( qkw_dict=qkw_dict, akw_path=akw_dict ) 
    res = qkw_match.post_processing_q( testword,res_dict )
    print ('res>>>>>', res )
    return res


def test_akw_match(testword):
    qkw_match = QAMatchKW( qkw_dict=qkw_dict, akw_path=akw_dict ) 
    res = qkw_match.post_processing_a( testword,res_dict )
    print ('res>>>>>', res )
    return res



if __name__ == '__main__':
    testword = "神仙税多少钱"
    test_qkw_match(testword)
    testword = "799"
    test_akw_match(testword)

'''
res>>>>> {'id0': 1.0}
res>>>>> {'id0': [1.0, '神仙水'], 'id1': [0.0, '海蓝之谜|lammer']}
'''

本文地址:https://blog.csdn.net/u014365862/article/details/107435279

相关标签: NLP