Hadoop实践|矩阵乘法
程序员文章站
2022-09-30 22:08:36
这篇博文列举了两种基础的方法,区别在于输入数据的形式,
一种是矩阵形式;一种是(横坐标,纵坐标,值)的形式
同时这篇博文提到关于矩阵运算的应用:
两种实现的reduce阶段,计算最后结果...
这篇博文列举了两种基础的方法,区别在于输入数据的形式,
一种是矩阵形式;一种是(横坐标,纵坐标,值)的形式
同时这篇博文提到关于矩阵运算的应用:
两种实现的reduce阶段,计算最后结果时,都是直接使用内存存储数据、计算结果,所以当数据量很大的时候(通常都会很大,否则不会用分布式处理),极易造成内存溢出,所以,对于大矩阵的运算,还需要其他的转换方式,比如行列相乘运算、分块矩阵运算、基于最小粒度相乘的算法等方式。另外,因为这两份代码都是demo,所以代码中缺少过滤错误数据的部分。
本文使用的第二种
自己建了两个数组,大小为2
你需要做的就是把 输入文件放进去
配置文件复制到工程src文件件下
复制粘贴
package org.apache.hadoop.examples; import java.io.IOException; import java.util.HashMap; import java.util.Iterator; import java.util.Map; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.FileSplit; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; /** * @author liuxinghao * @version 1.0 Created on 2014年10月10日 */ public class SparseMatrixMultiply { public static class SMMapper extends Mapper { private String flag = null; private int m = 2;// 矩阵A的行数 private int p = 3;// 矩阵B的列数 @Override protected void setup(Context context) throws IOException, InterruptedException { FileSplit split = (FileSplit) context.getInputSplit(); flag = split.getPath().getName(); } @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] val = value.toString().split(","); if ("t1".equals(flag)) { for (int i = 1; i <= p; i++) { context.write(new Text(val[0] + "," + i), new Text("a," + val[1] + "," + val[2])); } } else if ("t2".equals(flag)) { for (int i = 1; i <= m; i++) { context.write(new Text(i + "," + val[1]), new Text("b," + val[0] + "," + val[2])); } } } } public static class SMReducer extends Reducer { @Override protected void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException { Map mapA = new HashMap(); Map mapB = new HashMap(); for (Text value : values) { String[] val = value.toString().split(","); if ("a".equals(val[0])) { mapA.put(val[1], val[2]); } else if ("b".equals(val[0])) { mapB.put(val[1], val[2]); } } int result = 0; // 可能在mapA中存在在mapB中不存在的key,或相反情况 // 因为,数据定义的时候使用的是稀疏矩阵的定义 // 所以,这种只存在于一个map中的key,说明其对应元素为0,不影响结果 Iterator mKeys = mapA.keySet().iterator(); while (mKeys.hasNext()) { String mkey = mKeys.next(); if (mapB.get(mkey) == null) {// 因为mkey取的是mapA的key集合,所以只需要判断mapB是否存在即可。 continue; } result += Integer.parseInt(mapA.get(mkey)) * Integer.parseInt(mapB.get(mkey)); } context.write(key, new IntWritable(result)); } } public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { String input1 = "hdfs:/matrix/t1"; String input2 = "hdfs:/matrix/t2"; String output = "hdfs:/matrix/out"; Configuration conf = new Configuration(); conf.addResource("classpath:/core-site.xml"); conf.addResource("classpath:/hdfs-site.xml"); Job job = Job.getInstance(conf, "SparseMatrixMultiply"); job.setJarByClass(SparseMatrixMultiply.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); job.setMapperClass(SMMapper.class); job.setReducerClass(SMReducer.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); FileInputFormat.setInputPaths(job, new Path(input1), new Path(input2));// 加载2个输入数据集 Path outputPath = new Path(output); outputPath.getFileSystem(conf).delete(outputPath, true); FileOutputFormat.setOutputPath(job, outputPath); System.exit(job.waitForCompletion(true) 0 : 1); } }
日志文件:
18/03/25 04:24:15 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable 18/03/25 04:24:17 INFO Configuration.deprecation: session.id is deprecated. Instead, use dfs.metrics.session-id 18/03/25 04:24:17 INFO jvm.JvmMetrics: Initializing JVM Metrics with processName=JobTracker, sessionId= 18/03/25 04:24:17 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this. 18/03/25 04:24:17 WARN mapreduce.JobResourceUploader: No job jar file set. User classes may not be found. See Job or Job#setJar(String). 18/03/25 04:24:17 INFO input.FileInputFormat: Total input paths to process : 2 18/03/25 04:24:17 INFO mapreduce.JobSubmitter: number of splits:2 18/03/25 04:24:18 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_local1549038765_0001 18/03/25 04:24:18 INFO mapreduce.Job: The url to track the job: https://localhost:8080/ 18/03/25 04:24:18 INFO mapreduce.Job: Running job: job_local1549038765_0001 18/03/25 04:24:18 INFO mapred.LocalJobRunner: OutputCommitter set in config null 18/03/25 04:24:18 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1 18/03/25 04:24:18 INFO mapred.LocalJobRunner: OutputCommitter is org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter 18/03/25 04:24:18 INFO mapred.LocalJobRunner: Waiting for map tasks 18/03/25 04:24:18 INFO mapred.LocalJobRunner: Starting task: attempt_local1549038765_0001_m_000000_0 18/03/25 04:24:18 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1 18/03/25 04:24:18 INFO mapred.Task: Using ResourceCalculatorProcessTree : [ ] 18/03/25 04:24:18 INFO mapred.MapTask: Processing split: hdfs://master:9000/matrix/t2:0+54 18/03/25 04:24:18 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584) 18/03/25 04:24:18 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100 18/03/25 04:24:18 INFO mapred.MapTask: soft limit at 83886080 18/03/25 04:24:18 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600 18/03/25 04:24:18 INFO mapred.MapTask: kvstart = 26214396; length = 6553600 18/03/25 04:24:18 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer 18/03/25 04:24:19 INFO mapred.LocalJobRunner: 18/03/25 04:24:19 INFO mapred.MapTask: Starting flush of map output 18/03/25 04:24:19 INFO mapred.MapTask: Spilling map output 18/03/25 04:24:19 INFO mapred.MapTask: bufstart = 0; bufend = 180; bufvoid = 104857600 18/03/25 04:24:19 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214328(104857312); length = 69/6553600 18/03/25 04:24:19 INFO mapred.MapTask: Finished spill 0 18/03/25 04:24:19 INFO mapred.Task: Task:attempt_local1549038765_0001_m_000000_0 is done. And is in the process of committing 18/03/25 04:24:19 INFO mapred.LocalJobRunner: map 18/03/25 04:24:19 INFO mapred.Task: Task 'attempt_local1549038765_0001_m_000000_0' done. 18/03/25 04:24:19 INFO mapred.LocalJobRunner: Finishing task: attempt_local1549038765_0001_m_000000_0 18/03/25 04:24:19 INFO mapred.LocalJobRunner: Starting task: attempt_local1549038765_0001_m_000001_0 18/03/25 04:24:19 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1 18/03/25 04:24:19 INFO mapred.Task: Using ResourceCalculatorProcessTree : [ ] 18/03/25 04:24:19 INFO mapreduce.Job: Job job_local1549038765_0001 running in uber mode : false 18/03/25 04:24:19 INFO mapred.MapTask: Processing split: hdfs://master:9000/matrix/t1:0+36 18/03/25 04:24:19 INFO mapreduce.Job: map 100% reduce 0% 18/03/25 04:24:19 INFO mapred.MapTask: (EQUATOR) 0 kvi 26214396(104857584) 18/03/25 04:24:19 INFO mapred.MapTask: mapreduce.task.io.sort.mb: 100 18/03/25 04:24:19 INFO mapred.MapTask: soft limit at 83886080 18/03/25 04:24:19 INFO mapred.MapTask: bufstart = 0; bufvoid = 104857600 18/03/25 04:24:19 INFO mapred.MapTask: kvstart = 26214396; length = 6553600 18/03/25 04:24:19 INFO mapred.MapTask: Map output collector class = org.apache.hadoop.mapred.MapTask$MapOutputBuffer 18/03/25 04:24:19 INFO mapred.LocalJobRunner: 18/03/25 04:24:19 INFO mapred.MapTask: Starting flush of map output 18/03/25 04:24:19 INFO mapred.MapTask: Spilling map output 18/03/25 04:24:19 INFO mapred.MapTask: bufstart = 0; bufend = 180; bufvoid = 104857600 18/03/25 04:24:19 INFO mapred.MapTask: kvstart = 26214396(104857584); kvend = 26214328(104857312); length = 69/6553600 18/03/25 04:24:19 INFO mapred.MapTask: Finished spill 0 18/03/25 04:24:19 INFO mapred.Task: Task:attempt_local1549038765_0001_m_000001_0 is done. And is in the process of committing 18/03/25 04:24:19 INFO mapred.LocalJobRunner: map 18/03/25 04:24:19 INFO mapred.Task: Task 'attempt_local1549038765_0001_m_000001_0' done. 18/03/25 04:24:19 INFO mapred.LocalJobRunner: Finishing task: attempt_local1549038765_0001_m_000001_0 18/03/25 04:24:19 INFO mapred.LocalJobRunner: map task executor complete. 18/03/25 04:24:19 INFO mapred.LocalJobRunner: Waiting for reduce tasks 18/03/25 04:24:19 INFO mapred.LocalJobRunner: Starting task: attempt_local1549038765_0001_r_000000_0 18/03/25 04:24:19 INFO output.FileOutputCommitter: File Output Committer Algorithm version is 1 18/03/25 04:24:19 INFO mapred.Task: Using ResourceCalculatorProcessTree : [ ] 18/03/25 04:24:19 INFO mapred.ReduceTask: Using ShuffleConsumerPlugin: org.apache.hadoop.mapreduce.task.reduce.Shuffle@1bc75a85 18/03/25 04:24:20 INFO reduce.MergeManagerImpl: MergerManager: memoryLimit=322594400, maxSingleShuffleLimit=80648600, mergeThreshold=212912320, ioSortFactor=10, memToMemMergeOutputsThreshold=10 18/03/25 04:24:20 INFO reduce.EventFetcher: attempt_local1549038765_0001_r_000000_0 Thread started: EventFetcher for fetching Map Completion Events 18/03/25 04:24:20 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local1549038765_0001_m_000001_0 decomp: 218 len: 222 to MEMORY 18/03/25 04:24:20 INFO reduce.InMemoryMapOutput: Read 218 bytes from map-output for attempt_local1549038765_0001_m_000001_0 18/03/25 04:24:20 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 218, inMemoryMapOutputs.size() -> 1, commitMemory -> 0, usedMemory ->218 18/03/25 04:24:20 INFO reduce.LocalFetcher: localfetcher#1 about to shuffle output of map attempt_local1549038765_0001_m_000000_0 decomp: 218 len: 222 to MEMORY 18/03/25 04:24:20 INFO reduce.InMemoryMapOutput: Read 218 bytes from map-output for attempt_local1549038765_0001_m_000000_0 18/03/25 04:24:20 INFO reduce.MergeManagerImpl: closeInMemoryFile -> map-output of size: 218, inMemoryMapOutputs.size() -> 2, commitMemory -> 218, usedMemory ->436 18/03/25 04:24:20 INFO reduce.EventFetcher: EventFetcher is interrupted.. Returning 18/03/25 04:24:20 INFO mapred.LocalJobRunner: 2 / 2 copied. 18/03/25 04:24:20 INFO reduce.MergeManagerImpl: finalMerge called with 2 in-memory map-outputs and 0 on-disk map-outputs 18/03/25 04:24:20 INFO mapred.Merger: Merging 2 sorted segments 18/03/25 04:24:20 INFO mapred.Merger: Down to the last merge-pass, with 2 segments left of total size: 424 bytes 18/03/25 04:24:20 INFO reduce.MergeManagerImpl: Merged 2 segments, 436 bytes to disk to satisfy reduce memory limit 18/03/25 04:24:20 INFO reduce.MergeManagerImpl: Merging 1 files, 438 bytes from disk 18/03/25 04:24:20 INFO reduce.MergeManagerImpl: Merging 0 segments, 0 bytes from memory into reduce 18/03/25 04:24:20 INFO mapred.Merger: Merging 1 sorted segments 18/03/25 04:24:20 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 428 bytes 18/03/25 04:24:20 INFO mapred.LocalJobRunner: 2 / 2 copied. 18/03/25 04:24:20 INFO Configuration.deprecation: mapred.skip.on is deprecated. Instead, use mapreduce.job.skiprecords 18/03/25 04:24:20 INFO mapred.Task: Task:attempt_local1549038765_0001_r_000000_0 is done. And is in the process of committing 18/03/25 04:24:20 INFO mapred.LocalJobRunner: 2 / 2 copied. 18/03/25 04:24:20 INFO mapred.Task: Task attempt_local1549038765_0001_r_000000_0 is allowed to commit now 18/03/25 04:24:20 INFO output.FileOutputCommitter: Saved output of task 'attempt_local1549038765_0001_r_000000_0' to hdfs://master:9000/matrix/out/_temporary/0/task_local1549038765_0001_r_000000 18/03/25 04:24:20 INFO mapred.LocalJobRunner: reduce > reduce 18/03/25 04:24:20 INFO mapred.Task: Task 'attempt_local1549038765_0001_r_000000_0' done. 18/03/25 04:24:20 INFO mapred.LocalJobRunner: Finishing task: attempt_local1549038765_0001_r_000000_0 18/03/25 04:24:20 INFO mapred.LocalJobRunner: reduce task executor complete. 18/03/25 04:24:21 INFO mapreduce.Job: map 100% reduce 100% 18/03/25 04:24:21 INFO mapreduce.Job: Job job_local1549038765_0001 completed successfully 18/03/25 04:24:21 INFO mapreduce.Job: Counters: 35 File System Counters FILE: Number of bytes read=2139 FILE: Number of bytes written=875557 FILE: Number of read operations=0 FILE: Number of large read operations=0 FILE: Number of write operations=0 HDFS: Number of bytes read=234 HDFS: Number of bytes written=42 HDFS: Number of read operations=28 HDFS: Number of large read operations=0 HDFS: Number of write operations=8 Map-Reduce Framework Map input records=15 Map output records=36 Map output bytes=360 Map output materialized bytes=444 Input split bytes=186 Combine input records=0 Combine output records=0 Reduce input groups=6 Reduce shuffle bytes=444 Reduce input records=36 Reduce output records=6 Spilled Records=72 Shuffled Maps =2 Failed Shuffles=0 Merged Map outputs=2 GC time elapsed (ms)=19 Total committed heap usage (bytes)=907542528 Shuffle Errors BAD_ID=0 CONNECTION=0 IO_ERROR=0 WRONG_LENGTH=0 WRONG_MAP=0 WRONG_REDUCE=0 File Input Format Counters Bytes Read=90 File Output Format Counters Bytes Written=42