欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

易被忽略的Python内置类型

程序员文章站 2022-09-21 22:41:18
Python中的内置类型是我们开发中最常见的,很多人都能熟练的使用它们。 然而有一些内置类型确实不那么常见的,或者说往往会被我们忽略,所以这次的主题就是带领大家重新认识这些“不同寻常”的内置类型。 (注意:本文基于python3,不会包含任何python2相关内容) frozenset 不可变集合( ......

python中的内置类型是我们开发中最常见的,很多人都能熟练的使用它们。

然而有一些内置类型确实不那么常见的,或者说往往会被我们忽略,所以这次的主题就是带领大家重新认识这些“不同寻常”的内置类型。
(注意:本文基于python3,不会包含任何python2相关内容)

frozenset

不可变集合(frozenset)与普通的set一样,只不过它的元素是不可变的,因此诸如addremoveupdate等可以添加/删除/改变集合内元素的方法是不存在的,换句话说一旦frozenset建立后你将不再可能更改集合内的元素。其他的方法与set一致:

>>> frozen = frozenset([1, 1, 2, 3, 4, 5, 6, 6])
frozenset({1, 2, 3, 4, 5, 6})
>>> frozen | {1, 2, 3, 7, 8}
frozenset({1, 2, 3, 4, 5, 6, 7, 8})
>>> frozen ^ {1, 2, 3, 7, 8}
frozenset({4, 5, 6, 7, 8})

range

range事实上相当得常见,所以你也许会奇怪我为什么把它列出来。

其实原因很简单,因为大部分人熟悉range的使用,但并不清楚range到底是什么。返回迭代器?返回一个可迭代对象?range本身又是什么呢?

答案揭晓:

>>> range
<class 'range'>

是的,range是个class!所以当我们使用for i in range(1, 10)这样的代码时,实际上我们遍历了一个range对象,而range也实现了可迭代对象需要的__iter__魔法方法,所以它自身是可迭代对象:

>>> range.__iter__
<slot wrapper '__iter__' of 'range' objects>

因此,range既不返回迭代器,也不返回其他可迭代对象,而是返回的自己。

bytearray

bytearray一般情况下并不常见,它主要为了可以实现原地修改bytes对象而出现,因为bytes和str一样是不可变对象,例如这样是非法的:

>>> b = '测试用例a'.encode('utf8')
>>> b[-1] = 98 # change 'a' -> 'b'
traceback (most recent call last):
  file "<stdin>", line 1, in <module>
typeerror: 'bytes' object does not support item assignment

而当我们把bytes的内容复制给bytearray时就可以进行原地修改了:

>>> array = bytearray(b)
>>> array[-1] = 98
>>> array.decode('utf8')
测试用例b

bytearray对象没有字面常量,因此只能通过构造函数创建,它有着和bytes一样的方法,只是可变以及多了一些序列对象的特性。如果要创建一个bytearray可以有如下的几种方法:

  • bytearray()返回一个空的bytearray对象
  • bytearray(10)创建一个长度为10且内容被0填充的bytearray
  • bytearray(iterable)会将可迭代对象的内容转换成bytes然后存入对象中
  • bytearray(b'hi!')将已有的二进制数据复制进对象

另外bytearray还提供了fromhexhex方便将数据以16进制的形式输入输出:

>>> array.hex()
'e6b58be8af95e794a8e4be8b62'
>>> bytearray().fromhex('e6b58be8af95e794a8e4be8b62').decode('utf8')
'测试用例b'

memoryview

memoryview提供了直接访问对象内存的机制,只要目标对象支持,例如bytesbytearray

memoryview有个称为“元素”的概念,也就是对象规定的最小的内存单元,比如bytesbytearray的最小内存单元就是一个byte,具体取决于对象的实现。

len(view)通常等于len(view.tolist()),也就是等于view的“元素”数量。如果view.ndim == 0,那么整个view的内存会被视作一个整体,len会返回1,如果view.ndim == 1那么就正常返回“元素”的个数。view.itemsize会返回单个“元素”的大小。单位是byte。

view.readonly表示当前的memoryview是否是只读的,例如bytes对象的view就是只读的,view.readonly的值为true。是否只读取决于被引用的对象是否可变以及对buffer protocol的实现。

对于使用完毕的memoryview应该尽快调用其release()方法释放资源,而且部分对象在被view引用时会自动进行一些限制,比如bytearray会禁止调整大小,及时释放view是资源可以解除这些限制。

结合示例可以更清晰地了解这些特性:

>>> data = bytearray(b'abcefg')
>>> v = memoryview(data)
>>> v.readonly
false
>>> v[0] = ord(b'z')
>>> data
bytearray(b'zbcefg')
>>> v[1:4] = b'123'
>>> data
bytearray(b'z123fg')
>>> v[2:3] = b'spam'
traceback (most recent call last):
  file "<stdin>", line 1, in <module>
valueerror: memoryview assignment: lvalue and rvalue have different structures
>>> v[2:6] = b'spam'
>>> data
bytearray(b'z1spam')

dict-views

准确的说,这不是一种类型,而是一种概念。然而typing里仍然将其视为一种类型,所以也就罗列在此了。

概念:返回自dict.keys(),dict.values()和dict.items()的对象被称作dict-views

对于views对象,可以使用len,成员检测,它本身也是可迭代对象:

>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
>>> keys = dishes.keys()
>>> values = dishes.values()

>>> # iteration
>>> n = 0
>>> for val in values:
...     n += val
>>> print(n)
504

>>> # keys and values are iterated over in the same order (insertion order)
>>> list(keys)
['eggs', 'sausage', 'bacon', 'spam']
>>> list(values)
[2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes['eggs']
>>> del dishes['sausage']
>>> list(keys)
['bacon', 'spam']

>>> # set operations
>>> keys & {'eggs', 'bacon', 'salad'}
{'bacon'}
>>> keys ^ {'sausage', 'juice'}
{'juice', 'sausage', 'bacon', 'spam'}

从例子中可以看出,views保持着元素的插入顺序(插入顺序的保证从python3.6开始)以及views动态反应了key/value的插入和删除以及修改,因此在某些场景下views对象是相当有用的。

the ellipsis object (...)

...不是一个类型,不过算是一个内置对象。

它没什么特殊的含义,仅表示省略,通常被用在type hints中:

>>> ...
ellipsis
>>> from typing import callable
>>> func: callable[..., none] = lambda x,y:print(x*y)

func是一个没有返回值的函数,参数列表没有做任何限制。

你也可以写成ellipsis,两者是等价的,不过显然是...这种形式更简单明了。

以上就是这些容易被忽略和遗忘的内置类型,如有错误和疏漏欢迎指出。

参考: