欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

python实现简单神经网络算法

程序员文章站 2022-09-17 18:04:55
python实现简单神经网络算法,供大家参考,具体内容如下 python实现二层神经网络 包括输入层和输出层 import numpy as np...

python实现简单神经网络算法,供大家参考,具体内容如下

python实现二层神经网络

包括输入层和输出层

import numpy as np 
 
#sigmoid function 
def nonlin(x, deriv = False): 
  if(deriv == True): 
    return x*(1-x) 
  return 1/(1+np.exp(-x)) 
 
#input dataset 
x = np.array([[0,0,1], 
       [0,1,1], 
       [1,0,1], 
       [1,1,1]]) 
 
#output dataset 
y = np.array([[0,0,1,1]]).T 
 
np.random.seed(1) 
 
#init weight value 
syn0 = 2*np.random.random((3,1))-1 
 
for iter in xrange(100000): 
  l0 = x             #the first layer,and the input layer  
  l1 = nonlin(np.dot(l0,syn0))  #the second layer,and the output layer 
 
 
  l1_error = y-l1 
 
  l1_delta = l1_error*nonlin(l1,True) 
 
  syn0 += np.dot(l0.T, l1_delta) 
print "outout after Training:" 
print l1 
import numpy as np 
 
#sigmoid function 
def nonlin(x, deriv = False): 
  if(deriv == True): 
    return x*(1-x) 
  return 1/(1+np.exp(-x)) 
 
#input dataset 
x = np.array([[0,0,1], 
       [0,1,1], 
       [1,0,1], 
       [1,1,1]]) 
 
#output dataset 
y = np.array([[0,0,1,1]]).T 
 
np.random.seed(1) 
 
#init weight value 
syn0 = 2*np.random.random((3,1))-1 
 
for iter in xrange(100000): 
  l0 = x             #the first layer,and the input layer  
  l1 = nonlin(np.dot(l0,syn0))  #the second layer,and the output layer 
 
 
  l1_error = y-l1 
 
  l1_delta = l1_error*nonlin(l1,True) 
 
  syn0 += np.dot(l0.T, l1_delta) 
print "outout after Training:" 
print l1 

这里,
l0:输入层

l1:输出层

syn0:初始权值

l1_error:误差

l1_delta:误差校正系数

func nonlin:sigmoid函数

python实现简单神经网络算法

可见迭代次数越多,预测结果越接近理想值,当时耗时也越长。

python实现三层神经网络

包括输入层、隐含层和输出层

import numpy as np 
 
def nonlin(x, deriv = False): 
  if(deriv == True): 
    return x*(1-x) 
  else: 
    return 1/(1+np.exp(-x)) 
 
#input dataset 
X = np.array([[0,0,1], 
       [0,1,1], 
       [1,0,1], 
       [1,1,1]]) 
 
#output dataset 
y = np.array([[0,1,1,0]]).T 
 
syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value 
syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value 
 
for j in range(60000): 
  l0 = X            #the first layer,and the input layer  
  l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer 
  l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer 
 
 
  l2_error = y-l2    #the hidden-output layer error 
 
  if(j%10000) == 0: 
    print "Error:"+str(np.mean(l2_error)) 
 
  l2_delta = l2_error*nonlin(l2,deriv = True) 
 
  l1_error = l2_delta.dot(syn1.T)   #the first-hidden layer error 
 
  l1_delta = l1_error*nonlin(l1,deriv = True) 
 
  syn1 += l1.T.dot(l2_delta) 
  syn0 += l0.T.dot(l1_delta) 
print "outout after Training:" 
print l2 
import numpy as np 
 
def nonlin(x, deriv = False): 
  if(deriv == True): 
    return x*(1-x) 
  else: 
    return 1/(1+np.exp(-x)) 
 
#input dataset 
X = np.array([[0,0,1], 
       [0,1,1], 
       [1,0,1], 
       [1,1,1]]) 
 
#output dataset 
y = np.array([[0,1,1,0]]).T 
 
syn0 = 2*np.random.random((3,4)) - 1 #the first-hidden layer weight value 
syn1 = 2*np.random.random((4,1)) - 1 #the hidden-output layer weight value 
 
for j in range(60000): 
  l0 = X            #the first layer,and the input layer  
  l1 = nonlin(np.dot(l0,syn0)) #the second layer,and the hidden layer 
  l2 = nonlin(np.dot(l1,syn1)) #the third layer,and the output layer 
 
 
  l2_error = y-l2    #the hidden-output layer error 
 
  if(j%10000) == 0: 
    print "Error:"+str(np.mean(l2_error)) 
 
  l2_delta = l2_error*nonlin(l2,deriv = True) 
 
  l1_error = l2_delta.dot(syn1.T)   #the first-hidden layer error 
 
  l1_delta = l1_error*nonlin(l1,deriv = True) 
 
  syn1 += l1.T.dot(l2_delta) 
  syn0 += l0.T.dot(l1_delta) 
print "outout after Training:" 
print l2 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。