欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

BZOJ4514: [Sdoi2016]数字配对(费用流)

程序员文章站 2022-09-16 09:36:32
Description 有 n 种数字,第 i 种数字是 ai、有 bi 个,权值是 ci。 若两个数字 ai、aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对,并获得 ci×cj 的价值。 一个数字只能参与一次配对,可以不参与配对。 在获得的价值总和不小于 ......
Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 2197  Solved: 859
[Submit][Status][Discuss]

Description

有 n 种数字,第 i 种数字是 ai、有 bi 个,权值是 ci。
若两个数字 ai、aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数,
那么这两个数字可以配对,并获得 ci×cj 的价值。
一个数字只能参与一次配对,可以不参与配对。
在获得的价值总和不小于 0 的前提下,求最多进行多少次配对。
 

Input

第一行一个整数 n。
第二行 n 个整数 a1、a2、……、an。
第三行 n 个整数 b1、b2、……、bn。
第四行 n 个整数 c1、c2、……、cn。
 
 

Output

 一行一个数,最多进行多少次配对

 

Sample Input

3
2 4 8
2 200 7
-1 -2 1

Sample Output

4

HINT

 

 n≤200,ai≤10^9,bi≤10^5,∣ci∣≤10^5

 

Source

 
啊啊啊啊啊费用流连边的时候把流量和费用搞混了调了两个小时QWQ
考场上主要遇到了两个问题:
1.如何保证费用大于0的时候流量最大
2.如何保证每个点不被重复使用
对于第一个问题,我们可以贪心解决
即在增广的过程中,如果发现当前路径继续增光不满足条件,那么增广到上限后的最大流量就是答案
对于第二个问题,我们可以把每个数质因数分解后,按照指数的奇偶分为左边和右边,这样连边的话就不会有重复了
 
#include<bits/stdc++.h>
#define int long long 
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<23,stdin),p1==p2)?EOF:*p1++)
using namespace std;
const int MAXN=1e5+10;
const int INF=1e16+10;
char buf[1<<23],*p1=buf,*p2=buf;
inline int read()
{
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}
int N,S=0,T=23333;
int A[MAXN],B[MAXN],C[MAXN],cnt[MAXN];
struct node
{
    int u,v,w,f,nxt;
}edge[MAXN];
int head[MAXN],num=0;

inline void add_edge(int x,int y,int z,int f)
{
    edge[num].u=x;
    edge[num].v=y;
    edge[num].w=z;
    edge[num].f=f;
    edge[num].nxt=head[x];
    head[x]=num++;
}
void AddEdge(int x,int y,int z,int f) 
{
    add_edge(x,y,z,f);
    add_edge(y,x,-z,0);
}
inline int PrimeCut(int x)
{
    int tot=0;
    for(int i=2;i<=sqrt(x);i++)
        while(x%i==0) x/=i,tot++;
    return x>1?tot+1:tot;
}
namespace Liu
{
    int dis[MAXN],vis[MAXN],Pre[MAXN],ansflow=0,anscost=0;
    bool SPFA()
    {
        queue<int>q;
        q.push(S);
        memset(dis,0x3f,sizeof(dis));
        memset(vis,0,sizeof(vis));
        memset(Pre,0,sizeof(Pre));
        dis[S]=0;
        while(q.size()!=0)
        {
            int p=q.front();q.pop();
            vis[p]=0;
            for(int i=head[p];i!=-1;i=edge[i].nxt)
            {
                if(edge[i].f>0&&dis[edge[i].v]>dis[p]+edge[i].w)
                {
                    dis[edge[i].v]=dis[p]+edge[i].w;
                    Pre[edge[i].v]=i;
                    if(!vis[edge[i].v])
                        q.push(edge[i].v),
                        vis[edge[i].v]=1;
                }
            }
        }
        return dis[T]<INF;
    }
    bool f()
    {
        int nowflow=INF;
        for(int i=T;i!=S;i=edge[Pre[i]].u)
            nowflow=min(nowflow,edge[Pre[i]].f);
        if(anscost+nowflow*(-dis[T]) < 0) 
        {
            ansflow+=anscost/dis[T];
            return 0;
        }
        for(int i=T;i!=S;i=edge[Pre[i]].u)
            edge[Pre[i]].f-=nowflow,
            edge[Pre[i]^1].f+=nowflow;
        anscost+=nowflow*(-dis[T]);
        ansflow+=nowflow;
    //    printf("%d\n",ansflow);
        return 1; 
    }
    void MCMF()
    {
        bool flag=0;
        while(SPFA())
        {
            if( !f() )
            {
                flag=1;
                printf("%d",ansflow);
                break;
            }
        }
        if(flag==0) printf("%d",ansflow);
    }
}
void Work()
{
    for(int i=1;i<=N;i++) cnt[i]=PrimeCut(A[i]);
    for(int i=1;i<=N;i++)
        cnt[i]&1?AddEdge(S,i,0,B[i]):
                AddEdge(i+N,T,0,B[i]);
    for(int i=1;i<=N;i++)
    {
        if(cnt[i]&1)
        {
            for(int j=1;j<=N;j++)
                if( (cnt[i]+1==cnt[j]&&A[j]%A[i]==0) || (cnt[j]+1==cnt[i]&&A[i]%A[j]==0)  )
                    AddEdge(i,j+N,-C[i]*C[j],INF);    
        }
    }
    Liu::MCMF();
}
main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #else
    #endif
    memset(head,-1,sizeof(head));
    N=read();
    for(int i=1;i<=N;i++) A[i]=read();
    for(int i=1;i<=N;i++) B[i]=read();
    for(int i=1;i<=N;i++) C[i]=read();
    Work();
    return 0;
}

 

上一篇: 你在就是陷阱

下一篇: Python: Tools