欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

ES 18 - (底层原理) Elasticsearch写入索引数据的过程 以及优化写入过程

程序员文章站 2022-09-14 23:18:29
Elasticsearch是如何通过Lucene把索引数据写入磁盘的? 为了实现更快的实时性、更可靠的数据持久化, 以及更高效的大量segment文件的归并, 还能不能优化这个过程? 本片文章介绍一些优化实践, 欢迎交流呀( ⊙ o ⊙ ) ......

1 lucene操作document的流程

lucene将index数据分为segment(段)进行存储和管理.

lucene中, 倒排索引一旦被创建就不可改变, 要添加或修改文档, 就需要重建整个倒排索引, 这就对一个index所能包含的数据量, 或index可以被更新的频率造成了很大的限制.

为了在保留不变性的前提下实现倒排索引的更新, lucene引入了一个新思路: 使用更多的索引, 也就是通过增加新的补充索引来反映最新的修改, 而不是直接重写整个倒排索引.

—— 这样就能确保, 从最早的版本开始, 每一个倒排索引都会被查询到, 查询完之后再对结果进行合并.

1.1 添加document的流程

① 将数据写入buffer(内存缓冲区);

② 执行commit操作: buffer空间被占满, 其中的数据将作为新的 index segment 被commit到文件系统的cache(缓存)中;

③ cache中的index segment通过fsync强制flush到系统的磁盘上;

④ 写入磁盘的所有segment将被记录到commit point(提交点)中, 并写入磁盘;

④ 新的index segment被打开, 以备外部检索使用;

⑤ 清空当前buffer缓冲区, 等待接收新的文档.

说明:

(a) fsync是一个unix系统调用函数, 用来将内存缓冲区buffer中的数据存储到文件系统. 这里作了优化, 是指将文件缓存cache中的所有segment刷新到磁盘的操作.

(b) 每个shard都有一个提交点(commit point), 其中保存了当前shard成功写入磁盘的所有segment.

1.2 删除document的流程

① 提交删除操作, 先查询要删除的文档所属的segment;

② commit point中包含一个.del文件, 记录哪些segment中的哪些document被标记为deleted了;

③ 当.del文件中存储的文档足够多时, es将执行物理删除操作, 彻底清除这些文档.

  • 在删除过程中进行搜索操作:

    依次查询所有的segment, 取得结果后, 再根据.del文件, 过滤掉标记为deleted的文档, 然后返回搜索结果. —— 也就是被标记为delete的文档, 依然可以被查询到.

  • 在删除过程中进行更新操作:

    将旧文档标记为deleted, 然后将新的文档写入新的index segment中. 执行查询请求时, 可能会匹配到旧版本的文档, 但由于.del文件的存在, 不恰当的文档将被过滤掉.


2 优化写入流程 - 实现近实时搜索

2.1 流程的改进思路

(1) 现有流程的问题:

插入的新文档必须等待fsync操作将segment强制写入磁盘后, 才可以提供搜索.而 fsync操作的代价很大, 使得搜索不够实时.

(2) 改进写入流程:

① 将数据写入buffer(内存缓冲区);

② 不等buffer空间被占满, 而是每隔一定时间(默认1s), 其中的数据就作为新的index segment被commit到文件系统的cache(缓存)中;

③ index segment 一旦被写入cache(缓存), 就立即打开该segment供搜索使用;

④ 清空当前buffer缓冲区, 等待接收新的文档.

—— 这里移除了fsync操作, 便于后续流程的优化.

优化的地方: 过程②和过程③:

segment进入操作系统的缓存中就可以提供搜索, 这个写入和打开新segment的轻量过程被称为refresh.

2.2 设置refresh的间隔

elasticsearch中, 每个shard每秒都会自动refresh一次, 所以es是近实时的, 数据插入到可以被搜索的间隔默认是1秒.

(1) 手动refresh —— 测试时使用, 正式生产中请减少使用:

# 刷新所有索引:
post _refresh
# 刷新某一个索引: 
post employee/_refresh

(2) 手动设置refresh间隔 —— 若要优化索引速度, 而不注重实时性, 可以降低刷新频率:

# 创建索引时设置, 间隔1分钟: 
put employee
{
    "settings": {
        "refresh_interval": "1m"
    }
}
# 在已有索引中设置, 间隔10秒: 
put employee/_settings
{
    "refresh_interval": "10s"
}

(3) 当你在生产环境中建立一个大的新索引时, 可以先关闭自动刷新, 要开始使用该索引时再改回来:

# 关闭自动刷新: 
put employee/_settings
{
    "refresh_interval": -1 
} 
# 开启每秒刷新: 
put employee/_settings
{
    "refresh_interval": "1s"
} 


3 优化写入流程 - 实现持久化变更

elasticsearch通过事务日志(translog)来防止数据的丢失 —— durability持久化.

3.1 文档持久化到磁盘的流程

① 索引数据在写入内存buffer(缓冲区)的同时, 也写入到translog日志文件中;

② 每隔refresh_interval的时间就执行一次refresh:

(a) 将buffer中的数据作为新的 index segment, 刷到文件系统的cache(缓存)中;

(b) index segment一旦被写入文件cache(缓存), 就立即打开该segment供搜索使用;

③ 清空当前内存buffer(缓冲区), 等待接收新的文档;

④ 重复①~③, translog文件中的数据不断增加;

每隔一定时间(默认30分钟), 或者当translog文件达到一定大小时, 发生flush操作, 并执行一次全量提交:

(a) 将此时内存buffer(缓冲区)中的所有数据写入一个新的segment, 并commit到文件系统的cache中;

(b) 打开这个新的segment, 供搜索使用;

(c) 清空当前的内存buffer(缓冲区);

(d) 将translog文件中的所有segment通过fsync强制刷到磁盘上;

(e) 将此次写入磁盘的所有segment记录到commit point中, 并写入磁盘;

(f) 删除当前translog, 创建新的translog接收下一波创建请求.

扩展: translog也可以被用来提供实时crud.

当通过id查询、更新、删除一个文档时, 从segment中检索之前, 先检查translog中的最新变化 —— es总是能够实时地获取到文档的最新版本.

共计:3599 个字

3.2 基于translog和commit point的数据恢复

(1) 关于translog的配置:

flush操作 = 将translog中的记录刷到磁盘上 + 更新commit point信息 + 清空translog文件.

elasticsearch默认: 每隔30分钟就flush一次;
或者: 当translog文件的大小达到上限(默认为512mb)时主动触发flush.

相关配置为:

# 发生多少次操作(累计多少条数据)后进行一次flush, 默认是unlimited: 
index.translog.flush_threshold_ops

# 当translog的大小达到此预设值时, 执行一次flush操作, 默认是512mb: 
index.translog.flush_threshold_size

# 每隔多长时间执行一次flush操作, 默认是30min:
index.translog.flush_threshold_period

# 检查translog、并执行一次flush操作的间隔. 默认是5s: es会在5-10s之间进行一次操作: 
index.translog.interval

(2) 数据的故障恢复:

① 增删改操作成功的标志: segment被成功刷新到primary shard和其对应的replica shard的磁盘上, 对应的操作才算成功.

translog文件中存储了上一次flush(即上一个commit point)到当前时间的所有数据的变更记录. —— 即translog中存储的是还没有被刷到磁盘的所有最新变更记录.

③ es发生故障, 或重启es时, 将根据磁盘中的commit point去加载已经写入磁盘的segment, 并重做translog文件中的所有操作, 从而保证数据的一致性.

(3) 异步刷新translog:

为了保证不丢失数据, 就要保护translog文件的安全:

elasticsearch 2.0之后, 每次写请求(如index、delete、update、bulk等)完成时, 都会触发fsync将translog中的segment刷到磁盘, 然后才会返回200 ok的响应;

或者: 默认每隔5s就将translog中的数据通过fsync强制刷新到磁盘.

—— 提高数据安全性的同时, 降低了一点性能.

==> 频繁地执行fsync操作, 可能会产生阻塞导致部分操作耗时较久. 如果允许部分数据丢失, 可设置异步刷新translog来提高效率.

put employee/_settings
{
    "index.translog.durability": "async",
    "index.translog.sync_interval": "5s"
}


4 优化写入流程 - 实现海量segment文件的归并

4.1 存在的问题

由上述近实时性搜索的描述, 可知es默认每秒都会产生一个新的segment文件, 而每次搜索时都要遍历所有的segment, 这非常影响搜索性能.

为解决这一问题, es会对这些零散的segment进行merge(归并)操作, 尽量让索引中只保有少量的、体积较大的segment文件.

这个过程由独立的merge线程负责, 不会影响新segment的产生.

同时, 在merge段文件(segment)的过程中, 被标记为deleted的document也会被彻底物理删除.

4.2 merge操作的流程

① 选择一些有相似大小的segment, merge成一个大的segment;
② 将新的segment刷新到磁盘上;
③ 更新commit文件: 写一个新的commit point, 包括了新的segment, 并删除旧的segment;
④ 打开新的segment, 完成搜索请求的转移;
⑤ 删除旧的小segment.

4.3 优化merge的配置项

segment的归并是一个非常消耗系统cpu和磁盘io资源的任务, 所以es对归并线程提供了限速机制, 确保这个任务不会过分影响到其他任务.

(1) 归并线程的速度限制:

限速配置 indices.store.throttle.max_bytes_per_sec的默认值是20mb, 这对写入量较大、磁盘转速较高的服务器来说明显过低.

对elk stack应用, 建议将其调大到100mb或更高. 可以通过api设置, 也可以写在配置文件中:

put _cluster/settings
{
    "persistent" : {
        "indices.store.throttle.max_bytes_per_sec" : "100mb"
    }
}
// 响应结果如下: 
{
    "acknowledged": true,
    "persistent": {
        "indices": {
            "store": {
                "throttle": {
                    "max_bytes_per_sec": "100mb"
                }
            }
        }
    },
    "transient": {}
}

(2) 归并线程的数目:

推荐设置为cpu核心数的一半, 如果磁盘性能较差, 可以适当降低配置, 避免发生磁盘io堵塞:

put employee/_settings
{
    "index.merge.scheduler.max_thread_count" : 8
}

(3) 其他策略:

# 优先归并小于此值的segment, 默认是2mb:
index.merge.policy.floor_segment

# 一次最多归并多少个segment, 默认是10个: 
index.merge.policy.max_merge_at_once

# 一次直接归并多少个segment, 默认是30个
index.merge.policy.max_merge_at_once_explicit

# 大于此值的segment不参与归并, 默认是5gb. optimize操作不受影响
index.merge.policy.max_merged_segment

4.4 optimize接口的使用

segment的默认大小是5gb, 在非常庞大的索引中, 仍然会存在很多segment, 这对文件句柄、内存等资源都是很大的浪费.

但由于归并任务非常消耗资源, 所以一般不会选择加大 index.merge.policy.max_merged_segment 配置, 而是在负载较低的时间段, 通过optimize接口强制归并segment:

# 强制将segment归并为1个大的segment: 
post employee/_optimize?max_num_segments=1

# 在终端中的操作方法: 
curl -xpost http://ip:5601/employee/_optimize?max_num_segments=1

optimize线程不会受到任何资源上的限制, 所以不建议对还在写入数据的热索引(动态索引)执行这个操作.

实战建议: 对一些很少发生变化的老索引, 如日志信息, 可以将每个shard下的segment合并为一个单独的segment, 节约资源, 还能提高搜索效率.

参考资料

elasticsearch 基础理论 & 配置调优

版权声明

作者:

出处: 博客园

感谢阅读, 如果文章有帮助或启发到你, 点个[