spark 基础开发 Tips总结
本篇博客主要是 sparksql 从初始开发注意的一些基本点以及力所能及的可优化部分的介绍:
所使用spark版本:2.0.0 scala版本:2.11.8
1. sparksession的初始化:
val sparksession = sparksession.builder().master("local[*]").appname("appname").config("spark.sql.warehouse.dir", "file:///d:/xxxx/xxxx/spark-warehouse").config("spark.sql.shuffle.partitions", 50).getorcreate()
注意点:
a. spark.sql.warehouse.dir 需要显示设置,否则会抛出 exception in thread "main" java.lang.illegalargumentexception: java.net.urisyntaxexception: relative path in absolute uri: file:... 错误
b. spark.sql.shuffle.partitions 指定 shuffle 时 partition 个数,也即 reducer 个数。根据业务数据量测试调整最佳结果
partition 个数不宜设置过大:
reducer(代指 spark shuffle 过程中执行 shuffle read 的 task) 个数过多,每个 reducer 处理的数据量过小。大量小 task 造成不必要的 task 调度开销与可能的资源调度开销(如果开启了 dynamic allocation)
reducer 个数过大,如果 reducer 直接写 hdfs 会生成大量小文件,从而造成大量 addblock rpc,name node 可能成为瓶颈,并影响其它使用 hdfs 的应用
过多 reducer 写小文件,会造成后面读取这些小文件时产生大量 getblock rpc,对 name node 产生冲击
partition 个数不宜设置过小:
每个 reducer 处理的数据量太大,spill 到磁盘开销增大
reducer gc 时间增长
reducer 如果写 hdfs,每个 reducer 写入数据量较大,无法充分发挥并行处理优势
2. 将非结构化数据转换为结构化数据dataframe(本人用的自定义模式):
val rdd= sparksession.sparkcontext.textfile(path, 250) // 默认split为2
val schemastring = "time hour lic" //结构化数据的列名,可理解为关系型数据库的列名
val fields = schemastring.split(" ").map(fieldname => structfield(fieldname, stringtype, nullable = true)) // 字段名 字段类型 是否可为空
val schema = structtype(fields) //上两步组装最终 createdataframe 时需要的 schema
val rowrdd = citysecrdd.map(_.split(",")).filter(attributes => attributes.length >= 6 && attributes(1).equals("2")&& attributes(0).split(" ").length > 1 && attributes(0).split(" ")(1).split(":").length > 1).map(attributes => {row(attributes(0).trim,attributes(0).split(" " (1).split(":")(0).trim,attributes(2).trim,attributes(3).trim,attributes(4).trim,attributes(5).trim)}) //自定义一些过滤条件 以及组装最终的 row类型的rdd
val df= sparksession.createdataframe(rowrdd, schema) //将rdd装换成dataframe
3. 两种缓存使用方式:
1)df.persist(storagelevel.memory_only) //后续如果需要反复使用df[dataframe的简称],则就把此df缓存起来
df.unpersist() //释放缓存
常用的两种序列化方式:memory_only->不加工在内存中存储 memory_only_ser->在内存中序列化存储(占用内存空间较小)
2)df.createorreplacetempview("table")
sparksession.sql("cache table table") // 以 sql 形式缓存df
sparksession.sql("uncache table table") //释放缓存
4.spark整合hbase快速批量插入
将计算结果写入hbase:
注意:1) 如果是带有shuffle过程的,shuffle计算之前使用select()提出只需要的字段然后再进行计算,因为shuffle特别耗费时间,写磁盘的过程,所以要能少写就少写。
df.foreachpartition(partition => {
val hconf = hbaseconfiguration.create();
hconf.set(zkclientport, zkclientportvalue) //zk 端口
hconf.set(zkquorum, zkquorumvalue) //zk 地址
hconf.set(hbasemaster, hbasemastervalue) //hbase master
val mytable = new htable(hconf, tablename.valueof(tablename))
mytable.setautoflush(false, false) //关键点1
mytable.setwritebuffersize(5 * 1024 * 1024) //关键点2
partition.foreach(x => {
val column1 = x.getas[string]("column1") //列1
val column2 = x.getas[string]("column2") //列2
val column3 = x.getas[double]("column3") //列3
val date = datestr.replace("-", "") // 格式化后的日期
val rowkey = md5hash.getmd5ashex(bytes.tobytes(column1+ date)) + bytes.tobytes(hour)
val put = new put(bytes.tobytes(rowkey))
put.add("c1".getbytes(), "column1".getbytes(), licplatenum.getbytes()) //第一列族 第一列
put.add("c1".getbytes(), "column2".getbytes(), hour.getbytes()) //第一列族 第二列
put.add("c1".getbytes(), "column3".getbytes(), interval.tostring.getbytes()) //第一列族 第三列
put.add("c1".getbytes(), "date".getbytes(), date.getbytes()) //第一列族 第四列
mytable.put(put)
})
mytable.flushcommits() //关键点3
/*
*关键点1_:将自动提交关闭,如果不关闭,每写一条数据都会进行提交,是导入数据较慢的做主要因素。
关键点2:设置缓存大小,当缓存大于设置值时,hbase会自动提交。此处可自己尝试大小,一般对大数据量,设置为5m即可,本文设置为3m。
关键点3:每一个分片结束后都进行flushcommits(),如果不执行,当hbase最后缓存小于上面设定值时,不会进行提交,导致数据丢失。
注:此外如果想提高spark写数据如hbase速度,可以增加spark可用核数量。
*/
5. spark任务提交shell脚本:
spark-submit --jars /xxx/xxx/hbase/latest/lib/hbase-protocol-0.96.1.1-cdh5.0.2.jar \
--master yarn\
--num-executors 200 \
--conf "spark.driver.extraclasspath=/share/apps/hbase/latest/lib/hbase-protocol-0.96.1.1-cdh5.0.2.jar" \
--conf "spark.executor.extraclasspath=/share/apps/hbase/latest/lib/hbase-protocol-0.96.1.1-cdh5.0.2.jar" \
--conf spark.driver.cores=2 \
--conf spark.driver.memory=10g \
--conf spark.driver.maxresultsize=2g \
--conf spark.executor.cores=6 \
--conf spark.executor.memory=10g \
--conf spark.shuffle.blocktransferservice=nio \
--conf spark.memory.fraction=0.8 \
--conf spark.shuffle.memoryfraction=0.4 \
--conf spark.default.parallelism=1000 \
--conf spark.sql.shuffle.partitions=400 \ 默认200,如果项目中代码设置了此选项,则代码设置级别优先,会覆盖此处设置
--conf spark.shuffle.consolidatefiles=true \
--conf spark.shuffle.io.maxretries=10 \
--conf spark.scheduler.listenerbus.eventqueue.size=1000000 \
--class xxxxx\ 项目启动主类引用
--name zzzz \
/data/xxx/xxx-jar-with-dependencies.jar \ 项目jar包
"参数1" "参数2"
注: 红色部分是hbase需要的配置,同时需要在spark集群的spark-defaults.conf 里面配置
spark.driver.extraclasspath 和 spark.executor.extraclasspath 直指 hbase-protocol-0.96.1.1-cdh5.0.2.jar 路径
先写到这里吧,后续会继续完善通过sparkui 优化细节以及提交spark任务的时候 如何分配 executor.cores 和 executor.memory。
上一篇: JS里面的懒加载(lazyload)