欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python实现矩阵相乘的三种方法小结

程序员文章站 2022-08-28 07:54:28
问题描述 分别实现矩阵相乘的3种算法,比较三种算法在矩阵大小分别为22∗2222∗22, 23∗2323∗23, 24...

问题描述

分别实现矩阵相乘的3种算法,比较三种算法在矩阵大小分别为22∗2222∗22, 23∗2323∗23, 24∗2424∗24, 25∗2525∗25, 26∗2626∗26, 27∗2727∗27, 28∗2828∗28, 29∗2929∗29时的运行时间与MATLAB自带的矩阵相乘的运行时间,绘制时间对比图。

解题方法

本文采用了以下方法进行求值:矩阵计算法、定义法、分治法和Strassen方法。这里我们使用Matlab以及Python对这个问题进行处理,比较两种语言在一样的条件下,运算速度的差别。

编程语言

Python

具体代码

#-*- coding: utf-8 -*-
from matplotlib.font_manager import FontProperties
import numpy as np
import time
import random
import math
import copy
import matplotlib.pyplot as plt

#n = [2**2, 2**3, 2**4, 2**5, 2**6, 2**7, 2**8, 2**9, 2**10, 2**11, 2**12]
n = [2**2, 2**3, 2**4, 2**5, 2**6, 2**7, 2**8, 2**9, 2**10, 2**11]
Sum_time1 = []
Sum_time2 = []
Sum_time3 = []
Sum_time4 = []
for m in n:
 A = np.random.randint(0, 2, [m, m])
 B = np.random.randint(0, 2, [m, m])
 A1 = np.mat(A)
 B1 = np.mat(B)
 time_start = time.time()
 C1 = A1*B1
 time_end = time.time()
 Sum_time1.append(time_end - time_start)

 C2 = np.zeros([m, m], dtype = np.int)
 time_start = time.time()
 for i in range(m):
  for k in range(m):
   for j in range(m):
    C2[i, j] = C2[i, j] + A[i, k] * B[k, j]
 time_end = time.time()
 Sum_time2.append(time_end - time_start)
 A11 = np.mat(A[0:m//2, 0:m//2])
 A12 = np.mat(A[0:m//2, m//2:m])
 A21 = np.mat(A[m//2:m, 0:m//2])
 A22 = np.mat(A[m//2:m, m//2:m])
 B11 = np.mat(B[0:m//2, 0:m//2])
 B12 = np.mat(B[0:m//2, m//2:m])
 B21 = np.mat(B[m//2:m, 0:m//2])
 B22 = np.mat(B[m//2:m, m//2:m])
 time_start = time.time()
 C11 = A11 * B11 + A12 * B21
 C12 = A11 * B12 + A12 * B22
 C21 = A21 * B11 + A22 * B21
 C22 = A21 * B12 + A22 * B22
 C3 = np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22))))
 time_end = time.time()
 Sum_time3.append(time_end - time_start)
 time_start = time.time()
 M1 = A11 * (B12 - B22)
 M2 = (A11 + A12) * B22
 M3 = (A21 + A22) * B11
 M4 = A22 * (B21 - B11)
 M5 = (A11 + A22) * (B11 + B22)
 M6 = (A12 - A22) * (B21 + B22)
 M7 = (A11 - A21) * (B11 + B12)
 C11 = M5 + M4 - M2 + M6
 C12 = M1 + M2
 C21 = M3 + M4
 C22 = M5 + M1 - M3 - M7
 C4 = np.vstack((np.hstack((C11, C12)), np.hstack((C21, C22))))
 time_end = time.time()
 Sum_time4.append(time_end - time_start)

f1 = open('python_time1.txt', 'w')
for ele in Sum_time1:
 f1.writelines(str(ele) + '\n')
f1.close()

f2 = open('python_time2.txt', 'w')
for ele in Sum_time2:
 f2.writelines(str(ele) + '\n')
f2.close()

f3 = open('python_time3.txt', 'w')
for ele in Sum_time3:
 f3.writelines(str(ele) + '\n')
f3.close()

f4 = open('python_time4.txt', 'w')
for ele in Sum_time4:
 f4.writelines(str(ele) + '\n')
f4.close()

font = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=8)
plt.figure(1)
plt.subplot(221)
plt.semilogx(n, Sum_time1, 'r-*')
plt.ylabel(u"时间(s)", fontproperties=font)
plt.xlabel(u"矩阵的维度n", fontproperties=font)
plt.title(u'python自带的方法', fontproperties=font)
plt.subplot(222)
plt.semilogx(n, Sum_time2, 'b-*')
plt.ylabel(u"时间(s)", fontproperties=font)
plt.xlabel(u"矩阵的维度n", fontproperties=font)
plt.title(u'定义法', fontproperties=font)
plt.subplot(223)
plt.semilogx(n, Sum_time3, 'y-*')
plt.ylabel(u"时间(s)", fontproperties=font)
plt.xlabel(u"矩阵的维度n", fontproperties=font)
plt.title( u'分治法', fontproperties=font)
plt.subplot(224)
plt.semilogx(n, Sum_time4, 'g-*')
plt.ylabel(u"时间(s)", fontproperties=font)
plt.xlabel(u"矩阵的维度n", fontproperties=font)
plt.title( u'Strasses法', fontproperties=font)
plt.figure(2)
plt.semilogx(n, Sum_time1, 'r-*', n, Sum_time2, 'b-+', n, Sum_time3, 'y-o', n, Sum_time4, 'g-^')
#plt.legend(u'python自带的方法', u'定义法', u'分治法', u'Strasses法', fontproperties=font)
plt.show()

以上这篇Python实现矩阵相乘的三种方法小结就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。