欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Python 加速技巧总结

程序员文章站 2022-08-18 08:22:07
Python 加速运行技巧总结...

转载请注明作者和出处: http://blog.csdn.net/john_bh/

python 使用 concurrent.futures 并行处理数据,速度提高 2~6 倍。对比代码如下:

1. 避免全局变量

许多人刚开始会用 Python 语言写一些简单的脚本,当编写脚本时,通常习惯了直接将其写为全局变量。但是,由于全局变量和局部变量实现方式不同,定义在全局范围内的代码运行速度会比定义在函数中的慢不少。通过将脚本语句放入到函数中,通常可带来 15% - 30% 的速度提升。如下面对比代码:

# -*- coding :utf-8 -*-
import math
import time

start=time.time()
size = 100000
for x in range(size):
    for y in range(size):
        z = math.sqrt(x) + math.sqrt(y)

print("Global Taken Time: {}".format(time.time()-start))

def main():  # 定义到函数中,以减少全部变量使用
    start = time.time()
    size = 100000
    for x in range(size):
        for y in range(size):
            z = math.sqrt(x) + math.sqrt(y)

    print("Local Taken Time: {}".format(time.time() - start))

main()

Global Taken Time: 30.072156190872192
Local Taken Time: 24.563132286071777

2. 避免使用 .

2.1 避免模块和函数属性访问

每次使用.(属性访问操作符时)会触发特定的方法,如__getattribute__()__getattr__(),这些方法会进行字典操作,因此会带来额外的时间开销。通过from import语句,可以消除属性访问

下面代码经过三步优化:

  1. 第一步优化:使用from math import sqrt 替换import math,避免math.sqrt的使用;
  2. 第二部优化:将在局部函数中使用 sqrt = math.sqrt 赋值给局部变量,进行局部化处理;
  3. 第三步优化:优化函数中调用 list 的append方法。通过将该方法赋值给一个局部变量,可以彻底消除函数中for循环内部的.使用。

代码实现以及运行效率如下:

# -*- coding :utf-8 -*-
import math
import time

def computeSqrt1(size: int):
    """
        不推荐写法
    """
    result = []
    for i in range(size):
        result.append(math.sqrt(i))
    return result

from math import sqrt
def computeSqrt2(size: int):
    """
        优化了1.from math import sqrt,避免math.sqrt的使用
    """
    result = []
    for i in range(size):
        result.append(sqrt(i))  # 避免math.sqrt的使用
    return result

def computeSqrt3(size: int):
    """
        优化了1.from math import sqrt,避免math.sqrt的使用
              2.sqrt = math.sqrt  赋值给局部变量
    """
    result = []
    sqrt = math.sqrt  # 赋值给局部变量
    for i in range(size):
        result.append(sqrt(i))  # 避免math.sqrt的使用
    return result

def computeSqrt4(size: int):
    """
        优化了1.from math import sqrt,避免math.sqrt的使用
              2.sqrt = math.sqrt  赋值给局部变量
              3.result.append(sqrt(i))优化为 append = result.append,append(sqrt(i))  避免 result.append 和 math.sqrt 的使用
    """
    result = []
    append = result.append
    sqrt = math.sqrt    # 赋值给局部变量
    for i in range(size):
        append(sqrt(i))  # 避免 result.append 和 math.sqrt 的使用
    return result

def test(computeSqrt_fun):
    size = 10000
    start=time.time()
    for _ in range(size):
        result = computeSqrt_fun(size)
    takenTime=time.time() - start

    print("{} Taken Time: {}".format(computeSqrt_fun.__name__,takenTime))

if __name__ == "__main__":
    test(computeSqrt1)
    test(computeSqrt2)
    test(computeSqrt3)
    test(computeSqrt4)

computeSqrt1 Taken Time: 20.50309944152832
computeSqrt2 Taken Time: 13.954072952270508
computeSqrt3 Taken Time: 13.141065120697021
computeSqrt4 Taken Time: 11.455055952072144

2.2 避免类内属性访问

避免 . 的原则也适用于类内属性,访问self._value的速度会比访问一个局部变量更慢一些。通过将需要频繁访问的类内属性赋值给一个局部变量,可以提升代码运行速度。对比代码如下所示:

# -*- coding :utf-8 -*-
import math
import time
from typing import List

class DemoClass:
    def __init__(self, value: int):
        self._value = value

    def computeSqrt1(self, size: int) -> List[float]:  # 不推荐
        result = []
        append = result.append
        sqrt = math.sqrt
        for _ in range(size):
            append(sqrt(self._value))
        return result

    def computeSqrt2(self, size: int) -> List[float]:
        result = []
        append = result.append
        sqrt = math.sqrt
        value = self._value  # 避免 self._value 的使用
        for _ in range(size):
            append(sqrt(value))  # 避免 self._value 的使用
        return result

def test():
    size = 10000
    start1 = time.time()
    for _ in range(size):
        demo_instance = DemoClass(size)
        result = demo_instance.computeSqrt1(size)
    takenTime1 = time.time() - start1
    print("computeSqrt1 Taken Time: {}".format(takenTime1))

    start2 = time.time()
    for _ in range(size):
        demo_instance = DemoClass(size)
        result = demo_instance.computeSqrt2(size)
    takenTime2=time.time() - start2
    print("computeSqrt2 Taken Time: {}".format(takenTime2))
if __name__ == "__main__":
    test()

computeSqrt1 Taken Time: 13.82009768486023
computeSqrt2 Taken Time: 11.740054607391357

3. 避免不必要的抽象

任何时候当你使用额外的处理层(比如装饰器、属性访问、描述器)去包装代码时,都会让代码变慢。大部分情况下,需要重新进行审视使用属性访问器的定义是否有必要,使用getter/setter函数对属性进行访问通常是 C/C++ 程序员遗留下来的代码风格。如果真的没有必要,就使用简单属性。对比代码如下:

# -*- coding :utf-8 -*-

import time

class DemoClass1:
    """
        不推荐使用
    """
    def __init__(self, value: int):
        self.value = value

    @property
    def value(self) -> int:
        return self._value

    @value.setter
    def value(self, x: int):
        self._value = x

class DemoClass2:
    """
        优化后,避免不必要的抽象
    """
    def __init__(self, value: int):
        self.value = value  # 避免不必要的属性访问器

def test():
    size = 1000000

    start1 = time.time()
    for i in range(size):
        demo_instance = DemoClass1(size)
        value = demo_instance.value
        demo_instance.value = i
    takenTime1 = time.time() - start1
    print("DemoClass1 Taken Time: {}".format(takenTime1))

    start2 = time.time()
    for i in range(size):
        demo_instance = DemoClass2(size)
        value = demo_instance.value
        demo_instance.value = i
    takenTime2 = time.time() - start2
    print("DemoClass2 Taken Time: {}".format(takenTime2))

if __name__ == "__main__":
    test()

DemoClass1 Taken Time: 0.6100289821624756
DemoClass2 Taken Time: 0.3529999256134033

4. 避免数据复制

4.1 避免无意义的数据复制

对比代码如下:

# -*- coding :utf-8 -*-

import time

def fun1():
    """
        不推荐
    """
    size = 10000
    start1 = time.time()
    for _ in range(size):
        value = range(size)
        value_list = [x for x in value]
        square_list = [x * x for x in value_list]
    takenTime1 = time.time() - start1
    print("fun1 Taken Time: {}".format(takenTime1))

def fun2():
    size = 10000
    start2 = time.time()
    for _ in range(size):
        value = range(size)
        square_list = [x * x for x in value]  # 避免无意义的复制
    takenTime2 = time.time() - start2
    print("fun2 Taken Time: {}".format(takenTime2))
if __name__ == "__main__":
    fun1()
    fun2()

fun1 Taken Time: 7.48906683921814
fun2 Taken Time: 5.61405348777771

另外一种情况是对 Python 的数据共享机制过于偏执,并没有很好地理解或信任 Python 的内存模型,滥用 copy.deepcopy()之类的函数。通常在这些代码中是可以去掉复制操作的。

4.2 交换值时不使用中间变量

交换值时创建了一个临时变量temp,如果不借助中间变量,代码更为简洁、且运行速度更快。

# -*- coding :utf-8 -*-

import time

def fun1():
    """
        不推荐
    """
    size = 1000000

    start1 = time.time()

    for _ in range(size):
        a = 3
        b = 5
        temp = a
        a = b
        b = temp

    takenTime1 = time.time() - start1
    print("fun1 Taken Time: {}".format(takenTime1))

def fun2():
    size = 1000000

    start2 = time.time()

    for _ in range(size):
        a = 3
        b = 5
        a, b = b, a  # 不借助中间变量

    takenTime2 = time.time() - start2
    print("fun2 Taken Time: {}".format(takenTime2))

if __name__ == "__main__":
    fun1()
    fun2()

fun1 Taken Time: 0.04600167274475098
fun2 Taken Time: 0.0330042839050293

4.3 字符串拼接用 join 而不是 +

当使用 a + b 拼接字符串时,由于 Python 中字符串是不可变对象,其会申请一块内存空间,将a和b分别复制到该新申请的内存空间中。因此,如果要拼接 nn 个字符串,会产生 n1n-1 个中间结果,每产生一个中间结果都需要申请和复制一次内存,严重影响运行效率。而使用join()拼接字符串时,会首先计算出需要申请的总的内存空间,然后一次性地申请所需内存,并将每个字符串元素复制到该内存中去。

# -*- coding :utf-8 -*-

import time
import string
from typing import List

def concatString1(string_list: List[str]) -> str:
    """
        不推荐
    """
    result = ''
    for str_i in string_list:
        result += str_i
    return result

def concatString2(string_list: List[str]) -> str:
    return ''.join(string_list)  # 使用 join 而不是 +

def test():
    string_list = list(string.ascii_letters * 100)

    start1 = time.time()
    for _ in range(10000):
        result = concatString1(string_list)

    takenTime1 = time.time() - start1
    print("concatString1 by + Taken Time: {}".format(takenTime1))

    start2 = time.time()
    for _ in range(10000):
        result = concatString2(string_list)

    takenTime2 = time.time() - start2
    print("concatString2 by join Taken Time: {}".format(takenTime2))


if __name__ == "__main__":
    test()

concatString1 by + Taken Time: 9.188046216964722
concatString2 by join Taken Time: 0.3179972171783447

5. 利用if条件的短路特性

if 条件的短路特性是指对if a and b这样的语句, 当aFalse时将直接返回,不再计算b;对于if a or b这样的语句,当aTrue时将直接返回,不再计算b。因此, 为了节约运行时间,对于or语句,应该将值为True可能性比较高的变量写在or前,而and应该推后。

# -*- coding :utf-8 -*-

import time
import string
from typing import List

def concatString1(string_list: List[str]) -> str:
    abbreviations = {'cf.', 'e.g.', 'ex.', 'etc.', 'flg.', 'i.e.', 'Mr.', 'vs.'}
    result = ''
    for str_i in string_list:
        if str_i in abbreviations:
            result += str_i
    return result

def concatString2(string_list: List[str]) -> str:
    abbreviations = {'cf.', 'e.g.', 'ex.', 'etc.', 'flg.', 'i.e.', 'Mr.', 'vs.'}
    result = ''
    for str_i in string_list:
        if str_i[-1] == '.' and str_i in abbreviations:  # 利用 if 条件的短路特性
            result += str_i
    return result

def test():
    string_list = ['Mr.', 'Hat', 'is', 'Chasing', 'the', 'black', 'cat', '.']

    start1 = time.time()
    for _ in range(100000):
        result = concatString1(string_list)
    takenTime1 = time.time() - start1
    print("concatString1 Taken Time: {}".format(takenTime1))
    
    start2 = time.time()
    for _ in range(100000):
        result = concatString2(string_list)
    takenTime2 = time.time() - start2
    print("concatString2 Taken Time: {}".format(takenTime2))

if __name__ == "__main__":
    test()

理论上应该concatString2 比concatString1 快,但是结果是:

concatString1 Taken Time: 0.051025390625
concatString2 Taken Time: 0.07299995422363281

6. 循环优化

6.1 用for循环代替while循环,使用隐式for循环代替显式for循环

# -*- coding :utf-8 -*-

import time

def computeSum_while(size: int) -> int:
    """
        不推荐
    """
    sum_ = 0
    i = 0
    while i < size:
        sum_ += i
        i += 1
    return sum_

def computeSum_for(size: int) -> int:
    sum_ = 0
    for i in range(size):  # for 循环代替 while 循环
        sum_ += i
    return sum_

def computeSum(size: int) -> int:
    return sum(range(size))  # 隐式 for 循环代替显式 for 循环

def test():
    size = 10000

    start1 = time.time()
    for _ in range(size):
        sum_ = computeSum_while(size)
    takenTime1 = time.time() - start1
    print("computeSum_while Taken Time: {}".format(takenTime1))

    start2 = time.time()
    for _ in range(size):
        sum_ = computeSum_for(size)
    takenTime2 = time.time() - start2
    print("computeSum_for Taken Time: {}".format(takenTime2))

    start3 = time.time()
    for _ in range(size):
        sum_ = computeSum(size)
    takenTime3 = time.time() - start3
    print("computeSum Taken Time: {}".format(takenTime3))

if __name__ == "__main__":
    test()

computeSum_while Taken Time: 8.544030666351318
computeSum_for Taken Time: 4.945058107376099
computeSum Taken Time: 1.5659689903259277

6.2 减少内层for循环的计算

代码中尽量少用内循环,如下面函数 for_in 中 sqrt(x)位于内侧for循环, 每次训练过程中都会重新计算一次,增加了时间开销。

# -*- coding :utf-8 -*-

import time
import math

def for_in():
    """
        不推荐
    """
    start1 = time.time()
    size = 10000
    sqrt = math.sqrt
    for x in range(size):
        for y in range(size):
            z = sqrt(x) + sqrt(y)

    takenTime1 = time.time() - start1
    print("for_in Taken Time: {}".format(takenTime1))

def for_out():
    size = 10000
    sqrt = math.sqrt
    start2 = time.time()
    for x in range(size):
        sqrt_x = sqrt(x)  # 减少内层 for 循环的计算
        for y in range(size):
            z = sqrt_x + sqrt(y)

    takenTime2 = time.time() - start2
    print("for_out Taken Time: {}".format(takenTime2))

if __name__ == "__main__":
    for_in()
    for_out()

for_in Taken Time: 19.739089250564575
for_out Taken Time: 11.243038654327393

7. 使用numba.jit

numba可以将 Python 函数 JIT 编译为机器码执行,大大提高代码运行速度。关于numba的更多信息见下面的主页:http://numba.pydata.org/

# -*- coding :utf-8 -*-

import time
import numba

ef computeSum_while(size: int) -> int:
    """
        不推荐
    """
    sum_ = 0
    i = 0
    while i < size:
        sum_ += i
        i += 1
    return sum_

def computeSum_for(size: int) -> int:
    sum_ = 0
    for i in range(size):  # for 循环代替 while 循环
        sum_ += i
    return sum_

def computeSum(size: int) -> int:
    return sum(range(size))  # 隐式 for 循环代替显式 for 循环

@numba.jit
def computeSum_jit(size: float) -> int:
    sum = 0
    for i in range(size):
        sum += i
    return sum

def test():
    size = 10000

    start1 = time.time()
    for _ in range(size):
        sum_ = computeSum_while(size)
    takenTime1 = time.time() - start1
    print("computeSum_while Taken Time: {}".format(takenTime1))

    start2 = time.time()
    for _ in range(size):
        sum_ = computeSum_for(size)
    takenTime2 = time.time() - start2
    print("computeSum_for Taken Time: {}".format(takenTime2))

    start3 = time.time()
    for _ in range(size):
        sum_ = computeSum(size)
    takenTime3 = time.time() - start3
    print("computeSum Taken Time: {}".format(takenTime3))

    start4 = time.time()
    for _ in range(size):
        sum_ = computeSum_jit(size)
    takenTime4 = time.time() - start4
    print("computeSum_jit Taken Time: {}".format(takenTime4))

if __name__ == "__main__":
    test()

computeSum_while Taken Time: 8.01906418800354
computeSum_for Taken Time: 4.3460166454315186
computeSum Taken Time: 1.5610063076019287
computeSum_jit Taken Time: 0.4790055751800537

8. 选择合适的数据结构

Python 内置的数据结构如str, tuple, list, set, dict底层都是 C 实现的,速度非常快,自己实现新的数据结构想在性能上达到内置的速度几乎是不可能的。

list类似于 C++ 中的std::vector,是一种动态数组。其会预分配一定内存空间,当预分配的内存空间用完,又继续向其中添加元素时,会申请一块更大的内存空间,然后将原有的所有元素都复制过去,之后销毁之前的内存空间,再插入新元素。删除元素时操作类似,当已使用内存空间比预分配内存空间的一半还少时,会另外申请一块小内存,做一次元素复制,之后销毁原有大内存空间。因此,如果有频繁的新增、删除操作,新增、删除的元素数量又很多时,list的效率不高。此时,应该考虑使用 collections.dequecollections.deque是双端队列,同时具备栈和队列的特性,能够在两端进行 O(1)O(1) 复杂度的插入和删除操作。

list 的查找操作也非常耗时。当需要在list频繁查找某些元素,或频繁有序访问这些元素时,可以使用bisect维护list对象有序并在其中进行二分查找,提升查找的效率。

另外一个常见需求是查找极小值或极大值,此时可以使用heapq模块list转化为一个堆,使得获取最小值的时间复杂度是 O(1)O(1)

下面的网页给出了常用的 Python 数据结构的各项操作的时间复杂度:https://wiki.python.org/moin/TimeComplexity

  • list 操作:
    Python 加速技巧总结
  • deque操作:
    Python 加速技巧总结
  • set操作: Python 加速技巧总结
  • dict操作:
    Python 加速技巧总结

参考文章:

  1. Python加速运行技巧
  2. David Beazley & Brian K. Jones. Python Cookbook, Third edition. O’Reilly Media, ISBN: 9781449340377, 2013
  3. 张颖 & 赖勇浩. 编写高质量代码:改善Python程序的91个建议. 机械工业出版社, ISBN: 9787111467045, 2014.
  4. 常用的 Python 数据结构的各项操作的时间复杂度
  5. numba 主页

本文地址:https://blog.csdn.net/john_bh/article/details/107431097