tensorflow2.0 写一个生成对抗网络(GAN)
程序员文章站
2022-08-18 08:18:24
什么是生成对抗网络(GAN)?1、GAN的用途?GAN的初衷就是生成不存在于真实世界的数据,类似于使得 AI具有创造力或者想象力。应用场景如下:(1)AI作家,AI画家等需要创造力的AI体;(2)将模糊图变清晰(去雨,去雾,去抖动,去马赛克等),这需要AI具有所谓的“想象力”,能脑补情节;(3)进行数据增强,根据已有数据生成更多新数据供以feed,可以减缓模型过拟合现象。2、GAN的结构:理解GAN的两大护法G和DG是generator,生成器:负责凭空捏造数据出来.....
tensorflow2.0 写一个生成对抗网络(GAN)
1、GAN的用途?
GAN的初衷就是生成不存在于真实世界的数据,类似于使得 AI具有创造力或者想象力。
应用场景如下:
(1)AI作家,AI画家等需要创造力的AI体;
(2)将模糊图变清晰(去雨,去雾,去抖动,去马赛克等),这需要AI具有所谓的“想象力”,能脑补情节;
(3)进行数据增强,根据已有数据生成更多新数据供以feed,可以减缓模型过拟合现象。
2、GAN的结构:
理解GAN的两大护法G和D
G是generator,生成器: 负责凭空捏造数据出来
D是discriminator,判别器: 负责判断数据是不是真数据
这样可以简单的看作是两个网络的博弈过程。在最原始的GAN论文里面,G和D都是两个多层感知机网络。
首先,注意一点,GAN操作的数据不一定非得是图像数据,不过为了更方便解释,我在这里用图像数据为例解释以下GAN:
GAN是怎么训练的?
3、GAN的代码案例:
from __future__ import print_function, division
from keras.datasets import mnist
from keras.layers import Input, Dense, Reshape, Flatten, Dropout
from keras.layers import BatchNormalization, Activation, ZeroPadding2D
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
import matplotlib.pyplot as plt
import sys
import numpy as np
class GAN():
def __init__(self):
self.img_rows = 28
self.img_cols = 28
self.channels = 1
self.img_shape = (self.img_rows, self.img_cols, self.channels)
self.latent_dim = 100
optimizer = Adam(0.0002, 0.5)
# Build and compile the discriminator
self.discriminator = self.build_discriminator()
self.discriminator.compile(loss='binary_crossentropy',
optimizer=optimizer,
metrics=['accuracy'])
# Build the generator
self.generator = self.build_generator()
# The generator takes noise as input and generates imgs
z = Input(shape=(self.latent_dim,))
img = self.generator(z)
# For the combined model we will only train the generator
self.discriminator.trainable = False
# The discriminator takes generated images as input and determines validity
validity = self.discriminator(img)
# The combined model (stacked generator and discriminator)
# Trains the generator to fool the discriminator
self.combined = Model(z, validity)
self.combined.compile(loss='binary_crossentropy', optimizer=optimizer)
def build_generator(self):
model = Sequential()
model.add(Dense(256, input_dim=self.latent_dim))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(1024))
model.add(LeakyReLU(alpha=0.2))
model.add(BatchNormalization(momentum=0.8))
model.add(Dense(np.prod(self.img_shape), activation='tanh'))
model.add(Reshape(self.img_shape))
model.summary()
noise = Input(shape=(self.latent_dim,))
img = model(noise)
return Model(noise, img)
def build_discriminator(self):
model = Sequential()
model.add(Flatten(input_shape=self.img_shape))
model.add(Dense(512))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(256))
model.add(LeakyReLU(alpha=0.2))
model.add(Dense(1, activation='sigmoid'))
model.summary()
img = Input(shape=self.img_shape)
validity = model(img)
return Model(img, validity)
def train(self, epochs, batch_size=128, sample_interval=50):
# Load the dataset
(X_train, _), (_, _) = mnist.load_data()
# Rescale -1 to 1
X_train = X_train / 127.5 - 1.
X_train = np.expand_dims(X_train, axis=3)
# Adversarial ground truths
valid = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
for epoch in range(epochs):
# ---------------------
# Train Discriminator
# ---------------------
# Select a random batch of images
idx = np.random.randint(0, X_train.shape[0], batch_size)
imgs = X_train[idx]
noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
# Generate a batch of new images
gen_imgs = self.generator.predict(noise)
# Train the discriminator
d_loss_real = self.discriminator.train_on_batch(imgs, valid)
d_loss_fake = self.discriminator.train_on_batch(gen_imgs, fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# ---------------------
# Train Generator
# ---------------------
noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
# Train the generator (to have the discriminator label samples as valid)
g_loss = self.combined.train_on_batch(noise, valid)
# Plot the progress
print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" % (epoch, d_loss[0], 100*d_loss[1], g_loss))
# If at save interval => save generated image samples
if epoch % sample_interval == 0:
self.sample_images(epoch)
def sample_images(self, epoch):
r, c = 5, 5
noise = np.random.normal(0, 1, (r * c, self.latent_dim))
gen_imgs = self.generator.predict(noise)
# Rescale images 0 - 1
gen_imgs = 0.5 * gen_imgs + 0.5
fig, axs = plt.subplots(r, c)
cnt = 0
for i in range(r):
for j in range(c):
axs[i,j].imshow(gen_imgs[cnt, :,:,0], cmap='gray')
axs[i,j].axis('off')
cnt += 1
fig.savefig("images/%d.png" % epoch)
plt.close()
if __name__ == '__main__':
gan = GAN()
gan.train(epochs=30000, batch_size=32, sample_interval=200)
【其他神经网络科普】
图神经网络、
强化学习、
元学习、
自动化积极学习
【参考链接】
https://blog.csdn.net/leviopku/article/details/81292192
本文地址:https://blog.csdn.net/a_123456598/article/details/107446840
上一篇: 二维数组查找,替换空格,从尾到头打印列表
下一篇: 笔记本电源适配器隔离保护电路故障详解