欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

BZOJ2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理)

程序员文章站 2022-08-10 14:53:45
2440: [中山市选2011]完全平方数 Description 小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而这丝毫不影响他对其他数的热爱。 这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不 ......

2440: [中山市选2011]完全平方数

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 4920  Solved: 2389
[Submit][Status][Discuss]

Description

小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些
数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而
这丝毫不影响他对其他数的热爱。 
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一
个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了
小X。小X很开心地收下了。 
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?

Input

包含多组测试数据。文件第一行有一个整数 T,表示测试
数据的组数。 
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。 

Output

含T 行,分别对每组数据作出回答。第 i 行输出相应的
第Ki 个不是完全平方数的正整数倍的数。

Sample Input

4
1
13
100
1234567

Sample Output

1
19
163
2030745

HINT

 

对于 100%的数据有 1 ≤ Ki ≤ 10^9

,    T ≤ 50

 

Source

 

 

题目大意:求第$n$个无完全平方因子的数

如果直接硬求得话非常麻烦,因为我们无法确定枚举的范围,只能边枚举边统计,但这样 一定会T

所以我们转换一下思路,二分一个mid,表示$1-mid$中有多少个无完全平方因子的数

我们把$mid$质因数分解为$p_1*p_2*\dots p_k$

设$A_i$表示$\frac{x}{i*i}$,即$1-x$中含有$i*i$这个因子的数的个数

那么答案为

$mid - (A_{p_1} + A_{p_2} + \cdots + A_{p_k}) + (A_{p_1 \cdot p_2} + A_{p_1 \cdot p_3} + \cdots + A_{p_{k-1} \cdot p_k}) + \cdots + (-1)^{k} A_{\prod_{i=1}^{k} p_i}$

然后不难发现每一项的系数即为$mu[k]$,$k$表示分解出来的质数的个数

一个数的平方因子最大为$sqrt(n)$,因此只要枚举到$sqrt(n)$就好

二分的上界有一个公式,设置为$2*x$就好

BZOJ2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理)

#include<cstdio>
#include<cstring>
#include<cmath>
#define int long long 
using namespace std;
const int MAXN=1e6+10;
inline int read()
{
    char c=getchar();int x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}
int N;
int vis[MAXN],prime[MAXN],mu[MAXN],tot=0;
void GetMu()
{
    vis[1]=1;mu[1]=1;
    for(int i=2;i<=N;i++)
    {
        if(!vis[i]) prime[++tot]=i,mu[i]=-1;
        for(int j=1;i*prime[j]<=N&&j<=tot;j++)
        {
            vis[i*prime[j]]=1;
            if(i%prime[j]==0){mu[i*prime[j]]=0;break;}
            else mu[i*prime[j]]=-mu[i];
        }
    }
}
int check(int val)
{
    int limit=sqrt(val),ans=0;
    for(int i=1;i<=limit;i++)
        ans+=mu[i]*(val/(i*i));
    return ans;
}
main()
{
    #ifdef WIN32
    freopen("a.in","r",stdin);
    #else
    #endif
    N=1e6+10;
    GetMu();
    int QWQ=read();
    while(QWQ--)
    {
        int x=read();
        int l=1,r=x<<1,ans=0;
        while(l<=r)
        {
            int mid=l+r>>1;
            if(check(mid)>=x) ans=mid,r=mid-1;
            else l=mid+1;
        }
        printf("%d\n",ans);
    }
    return 0;
}