欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

一步一步剖析Dictionary实现原理

程序员文章站 2022-08-04 14:11:40
目录 关键的字段和Entry结构 添加键值(Add) 取键值(Find) 移除键值(Remove) 再插入键值 本文是对c#中Dictionary内部实现原理进行简单的剖析。如有表述错误,欢迎指正。 主要对照源码来解析,目前对照源码的版本是.Net Framwork 4.8,源码地址。 1. 关键的 ......

目录

  • 关键的字段和entry结构
  • 添加键值(add)
  • 取键值(find)
  • 移除键值(remove)
  • 再插入键值

  本文是对c#中dictionary内部实现原理进行简单的剖析。如有表述错误,欢迎指正。

  主要对照源码来解析,目前对照源码的版本是.net framwork 4.8,

1. 关键的字段和entry结构

        struct entry
        {
            public int hashcode;    // key的hashcode & 0x7fffffff
            public int next;            // 指向链表下一个元素的地址(实际就是entries的索引),最后一个元素为-1
            public tkey key;
            public tvalue value;
        }
        entry[] entries;        //存放键值
        int[] buckets;          //存储entries最新元素的索引,其存储位置由取模结果决定。例:假设键值存储在entries的第1元素的位置上,且hashcode和长度的取模结果为2,那么buckets[2] = 1
        int count = 0;         //已存储键值的个数
        int version;             //记录版本,防止迭代过程中集合被更改
        iequalitycomparer<tkey> _comparer;    
        int freelist;             //entries中最新空元素的索引
        int freecount;         //entries中空元素的个数

2. 添加键值(add)

        public void add(tkey key, tvalue value) {
            insert(key, value, true);
        }


        private void insert(tkey key, tvalue value, bool add) {
        
            if( key == null ) {
                throwhelper.throwargumentnullexception(exceptionargument.key);
            }
            if (buckets == null) initialize(0);
            int hashcode = comparer.gethashcode(key) & 0x7fffffff;
            //取模
            int targetbucket = hashcode % buckets.length;
#if feature_randomized_string_hashing
            int collisioncount = 0;
#endif
            for (int i = buckets[targetbucket]; i >= 0; i = entries[i].next) {
                if (entries[i].hashcode == hashcode &&  comparer.equals(entries[i].key, key)) {
                    if (add) {
                         throwhelper.throwargumentexception(exceptionresource.argument_addingduplicate);
                    }
                    //对于已存在的key重新赋值
                    entries[i].value = value;
                    version++;
                    return;
                }
#if feature_randomized_string_hashing
                collisioncount++;
#endif
            }
            int index;
            if (freecount > 0) {
                //存在entries中存在空元素
                index = freelist;
                freelist = entries[index].next;
                freecount--;
            }
            else {
                if (count == entries.length)
                {
                    //扩容:取大于count * 2的最小素数作为entries和bucket的新容量(即数组长度.length)
                    resize();
                    targetbucket = hashcode % buckets.length;
                }
                index = count;
                count++;
            }
            entries[index].hashcode = hashcode;
            entries[index].next = buckets[targetbucket];
            entries[index].key = key;
            entries[index].value = value;
            //存取链表的头元素的索引(即entries最后存入的元素的在enties中的索引)
            //便于取key的时每次从链表的头元素开始遍历,详细见findentry(tkey key)函数
            buckets[targetbucket] = index;
            version++;
#if feature_randomized_string_hashing
#if feature_coreclr
            // in case we hit the collision threshold we'll need to switch to the  comparer which is using randomized string hashing
            // in this case will be equalitycomparer<string>.default.
            // note, randomized string hashing is turned on by default on coreclr so  equalitycomparer<string>.default will
            // be using randomized string hashing
            if (collisioncount > hashhelpers.hashcollisionthreshold && comparer ==  nonrandomizedstringequalitycomparer.default)
            {
                comparer = (iequalitycomparer<tkey>)  equalitycomparer<string>.default;
                resize(entries.length, true);
            }
#else
            if(collisioncount > hashhelpers.hashcollisionthreshold &&  hashhelpers.iswellknownequalitycomparer(comparer))
            {
                //如果碰撞次数(单链表长度)大于设置的最大碰撞阈值,需要扩容
                comparer = (iequalitycomparer<tkey>)  hashhelpers.getrandomizedequalitycomparer(comparer);
                resize(entries.length, true);
            }
#endif // feature_coreclr
#endif
        }

******************************************************************************************************************************************
        static void foo()
        {
            var dicdata = new dictionary<int, int>();
      //添加键值
            new list<int> { 1, 2, 4 }.foreach(item => add(item, dicdata));
            new list<int> { 22, 29, 36, 20 }.foreach(item => add(item, dicdata));
        }
        static void add(int key, dictionary<int, int> dicdata)
        {
            dicdata.add(key, key);
        }

2.1 数组entries和buckets初始化

      private void initialize(int capacity) {
            //取大于capacity的最小质数(素数)
            int size = hashhelpers.getprime(capacity);
            buckets = new int[size];
            for (int i = 0; i < buckets.length; i++) buckets[i] = -1;
            entries = new entry[size];
            freelist = -1;
        }
    ****************************************************
    internal static class hashhelpers
    {
        ......
        public const int hashcollisionthreshold = 100;       //碰撞阈值
        ......
        public static readonly int[] primes = {
            3, 7, 11, 17, 23, 29, 37, 47, 59, 71, 89, 107, 131, 163, 197, 239, 293,  353, 431, 521, 631, 761, 919,
            1103, 1327, 1597, 1931, 2333, 2801, 3371, 4049, 4861, 5839, 7013, 8419,  10103, 12143, 14591,
            17519, 21023, 25229, 30293, 36353, 43627, 52361, 62851, 75431, 90523,  108631, 130363, 156437,
            187751, 225307, 270371, 324449, 389357, 467237, 560689, 672827, 807403,  968897, 1162687, 1395263,
            1674319, 2009191, 2411033, 2893249, 3471899, 4166287, 4999559, 5999471,  7199369};            //质数(素数)组
        ......

        public static int getprime(int min)
        {
            if (min < 0)
                throw new  argumentexception(environment.getresourcestring("arg_htcapacityoverflow"));
            contract.endcontractblock();
            //查找primes是否有满足的质数(素数)
            for (int i = 0; i < primes.length; i++)
            {
                int prime = primes[i];
                if (prime >= min) return prime;
            }
            //outside of our predefined table.
            //compute the hard way.
            //primes没有查找到满足的质数(素数),自行计算
            for (int i = (min | 1); i < int32.maxvalue;i+=2)
            {
                if (isprime(i) && ((i - 1) % hashtable.hashprime != 0))
                    return i;
            }
            return min;
        }
    }

 一步一步剖析Dictionary实现原理

 2.2 添加键值{1,1},则

    hashcode = 1;
  targetbucket = hascode % buckets.length;         //targetbucket = 1
    next = buckets[targetbucket];                               //next = -1
    buckets[targetbucket] = index;                             //buckets[1] = 0 

一步一步剖析Dictionary实现原理

 2.3 添加键值{2,2},则

    hashcode = 2;
  targetbucket = hascode % buckets.length;         //targetbucket = 2
    next = buckets[targetbucket];                               //next = -1
    buckets[targetbucket] = index;                              //buckets[2] = 1

一步一步剖析Dictionary实现原理

 2.4 添加键值{4,4},则

    hashcode = 4;
    targetbucket = hascode % buckets.length;         //targetbucket = 1
    next = buckets[targetbucket];                               //next = 0
    buckets[targetbucket] = index;                              //buckets[1] = 2

一步一步剖析Dictionary实现原理

接下来将entries数组以单链表的形式呈现(即enteries数组横向);

一步一步剖析Dictionary实现原理

 2.5 在继续添加键值之前,需要扩容操作,因为entries数组长度为3且都已有元素。扩容后需要对buckets和entries每个元素的next需要重新赋值;

       private void resize() {
            //扩容的大小:取大于(当前容量*2)的最小素数
            //例:
            resize(hashhelpers.expandprime(count), false);
        }
       private void resize(int newsize, bool forcenewhashcodes) {
            contract.assert(newsize >= entries.length);
            //实例化buckets,并将每个元素置为-1
            int[] newbuckets = new int[newsize];
            for (int i = 0; i < newbuckets.length; i++) newbuckets[i] = -1;
            entry[] newentries = new entry[newsize];
            array.copy(entries, 0, newentries, 0, count);
            //如果是hash碰撞扩容,使用新hashcode函数重新计算hash值
            if(forcenewhashcodes) {
                for (int i = 0; i < count; i++) {
                    if(newentries[i].hashcode != -1) {
                        newentries[i].hashcode =  (comparer.gethashcode(newentries[i].key) & 0x7fffffff);
                    }
                }
            }
            //重建单链表
            for (int i = 0; i < count; i++) {
                if (newentries[i].hashcode >= 0) {
                    //取模重新设置next值和buckets
                    int bucket = newentries[i].hashcode % newsize;
                    newentries[i].next = newbuckets[bucket];
                    newbuckets[bucket] = i;
                }
            }
            buckets = newbuckets;
            entries = newentries;
        }
*******************************************************************
    internal static class hashhelpers
    {
        ......
        public static readonly int[] primes = {
            3, 7, 11, 17, 23, 29, 37, 47, 59, 71, 89, 107, 131, 163, 197, 239, 293,  353, 431, 521, 631, 761, 919,
            1103, 1327, 1597, 1931, 2333, 2801, 3371, 4049, 4861, 5839, 7013, 8419,  10103, 12143, 14591,
            17519, 21023, 25229, 30293, 36353, 43627, 52361, 62851, 75431, 90523,  108631, 130363, 156437,
            187751, 225307, 270371, 324449, 389357, 467237, 560689, 672827, 807403,  968897, 1162687, 1395263,
            1674319, 2009191, 2411033, 2893249, 3471899, 4166287, 4999559, 5999471,  7199369};            //质数(素数)组
        
        ......
        // this is the maximum prime smaller than array.maxarraylength
        public const int maxprimearraylength = 0x7feffffd;         //数组最大长度的最小质数

        public static int expandprime(int oldsize)
        {    
            //翻倍
            int newsize = 2 * oldsize;
            // allow the hashtables to grow to maximum possible size (~2g elements)  before encoutering capacity overflow.
            // note that this check works even when _items.length overflowed thanks  to the (uint) cast
            //翻倍的大小不能超过【数组最大长度的最小质数】
            if ((uint)newsize > maxprimearraylength && maxprimearraylength >  oldsize)
            {
                contract.assert( maxprimearraylength ==  getprime(maxprimearraylength), "invalid maxprimearraylength");
                return maxprimearraylength;
            }
            //取最小的质数(素数)
            return getprime(newsize);
        }

        public static int getprime(int min)
        {
            if (min < 0)
                throw new  argumentexception(environment.getresourcestring("arg_htcapacityoverflow"));
            contract.endcontractblock();
            //查找primes是否有满足的质数(素数)
            for (int i = 0; i < primes.length; i++)
            {
                int prime = primes[i];
                if (prime >= min) return prime;
            }
            //outside of our predefined table.
            //compute the hard way.
            //primes没有查找到满足的质数(素数),自行计算
            for (int i = (min | 1); i < int32.maxvalue;i+=2)
            {
                if (isprime(i) && ((i - 1) % hashtable.hashprime != 0))
                    return i;
            }
            return min;
        }
    }

一步一步剖析Dictionary实现原理

 2.6 继续添加键值{22,22},{29,29},{36,36},{40,40},添加完后其内部存储结果如下

一步一步剖析Dictionary实现原理

 3. 取键值(find)

     public tvalue this[tkey key] {
            get {
                //取key对应值在entries的索引
                int i = findentry(key);
                if (i >= 0) return entries[i].value;
                throwhelper.throwkeynotfoundexception();
                return default(tvalue);
            }
            set {
                //更新key对应的值
                insert(key, value, false);
            }
        }

    private int findentry(tkey key) {
            if( key == null) {
                throwhelper.throwargumentnullexception(exceptionargument.key);
            }
            if (buckets != null) {
                int hashcode = comparer.gethashcode(key) & 0x7fffffff;
                //遍历单链表
                for (int i = buckets[hashcode % buckets.length]; i >= 0; i =  entries[i].next) {
                    if (entries[i].hashcode == hashcode &&  comparer.equals(entries[i].key, key)) return i;
                }
            }
            return -1;
        }
*********************************************************************************************
        static void foo()
        {
            ......
            //取key=22
            var val =dicdata[22];
}

简化取key对应值的代码

    var hashcode =comparer.gethashcode(key) & 0x7fffffff;   // 22
    var targetbuget = hashcode % buckets.length;            //取模运算 1  
    var i = bucket[targetbuget];                            //链表头元素的索引 bucket[1] = 5
    //遍历单链表
    for (; i >= 0; i =  entries[i].next) {
        if (entries[i].hashcode == hashcode &&  comparer.equals(entries[i].key, key)) return i;
    }

一步一步剖析Dictionary实现原理

 4. 移除键值(remove)

        public bool remove(tkey key) {
            if(key == null) {
                throwhelper.throwargumentnullexception(exceptionargument.key);
            }
            if (buckets != null) {
                int hashcode = comparer.gethashcode(key) & 0x7fffffff;
                int bucket = hashcode % buckets.length;
                int last = -1;
                //其原理先取出键值,然后记录entries空闲的索引(freelist)和空闲个数(freecount)
                for (int i = buckets[bucket]; i >= 0; last = i, i = entries[i].next)  {
                    if (entries[i].hashcode == hashcode &&  comparer.equals(entries[i].key, key)) {
                        if (last < 0) {
                            buckets[bucket] = entries[i].next;
                        }
                        else {
                            entries[last].next = entries[i].next;
                        }
                        entries[i].hashcode = -1;
                        //建立空闲链表
                        entries[i].next = freelist;
                        entries[i].key = default(tkey);
                        entries[i].value = default(tvalue);
                        //保存entryies中空元素的索引
                        //便于插入新键值时,放在当前索引的位置,减少entryies空间上的浪费
                        freelist = i;
                        //空元素的个数加1
                        freecount++;
                        version++;
                        return true;
                    }
                }
            }
            return false;
        }
*******************************************************************
        static void foo()
        {
            ......
            //移除
            new list<int> { 22, 29 }.foreach(item => dicdata.remove(item));
        } 

4.1 移除key=22后,freelist = 3, freecount = 1,

一步一步剖析Dictionary实现原理

 4.2 移除key=36后,freelist = 5, freecount = 2, 

一步一步剖析Dictionary实现原理

 5. 再插入键值

如上图,当移除掉{36,36}后,会发现又诞生一个含有两个元素的“新链表”(上图灰色框)。这个作用就是为了插入新键值时,按照“新链表”记录的索引顺序插入到entries数组中。
例:添加键值{22,22},{25,25},此时freelist = 5,freecount = 2;
  1. 给entries[5]赋值,freelist = 3, freecount = 1;
  2. 给entries[3]赋值,freelist = -1, freecount = 0;

一步一步剖析Dictionary实现原理 

 希望此文能够让你对于dictionary内部实现有所认识。