欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

matlab实现gabor filter 多种方式汇总

程序员文章站 2022-03-14 11:01:19
...

方式一:

 

function result = gaborKernel2d( lambda, theta, phi, gamma, bandwidth)
% GABORKERNEL2D 
% Version: 2012/8/17 by watkins.song
% Version: 1.0
%   Fills a (2N+1)*(2N+1) matrix with the values of a 2D Gabor function. 
%   N is computed from SIGMA.
%
%   LAMBDA - preferred wavelength (period of the cosine factor) [in pixels]
%   SIGMA - standard deviation of the Gaussian factor [in pixels]
%   THETA - preferred orientation [in radians]
%   PHI   - phase offset [in radians] of the cosine factor
%   GAMMA - spatial aspect ratio (of the x- and y-axis of the Gaussian elipse)
%   BANDWIDTH - spatial frequency bandwidth at half response,
%       *******************************************************************
%      
%       BANDWIDTH, SIGMA and LAMBDA are interdependent. To use BANDWIDTH, 
%       the input value of one of SIGMA or LAMBDA must be 0. Otherwise BANDWIDTH is ignored.
%       The actual value of the parameter whose input value is 0 is computed inside the 
%       function from the input vallues of BANDWIDTH and the other parameter.
% 
%                           pi               -1    x'^2+gamma^2*y'^2             
%   G(x,y,theta,f) =  --------------- *exp ([----{-------------------}])*cos(2*pi*f*x'+phi);
%                      2*sigma*sigma          2         sigma^2
%
%%% x' = x*cos(theta)+y*sin(theta);
%%% y' = y*cos(theta)-x*sin(theta);
%
% Author: watkins.song
% Email: [email protected]

% calculation of the ratio sigma/lambda from BANDWIDTH 
% according to Kruizinga and Petkov, 1999 IEEE Trans on Image Processing 8 (10) p.1396
% note that in Matlab log means ln  
slratio = (1/pi) * sqrt( (log(2)/2) ) * ( (2^bandwidth + 1) / (2^bandwidth - 1) );

% calcuate sigma
sigma = slratio * lambda;

% compute the size of the 2n+1 x 2n+1 matrix to be filled with the values of a Gabor function
% this size depends on sigma and gamma
if (gamma <= 1 && gamma > 0)
	n = ceil(2.5*sigma/gamma);
else
	n = ceil(2.5*sigma);
end

% creation of two (2n+1) x (2n+1) matrices x and y that contain the x- and y-coordinates of
% a square 2D-mesh; the rows of x and the columns of y are copies of the vector -n:n
[x,y] = meshgrid(-n:n);

% change direction of y-axis (In Matlab the vertical axis corresponds to the row index
% of a matrix. If the y-coordinates run from -n to n, the lowest value (-n) comes
% in the top row of the matrix ycoords and the highest value (n) in the
% lowest row. This is oposite to the customary rendering of values on the y-axis: lowest value 
% in the bottom, highest on the top. Therefore the y-axis is inverted:
y = -y;

% rotate x and y
% xp and yp are the coordinates of a point in a coordinate system rotated by theta.
% They are the main axes of the elipse of the Gaussian factor of the Gabor function.
% The wave vector of the Gabor function is along the xp axis.
xp =  x * cos(theta) + y * sin(theta);
yp = -x * sin(theta) + y * cos(theta);

% precompute coefficients gamma2=gamma*gamma, b=1/(2*sigma*sigma) and spacial frequency
% f = 2*pi/lambda to prevent multiple evaluations 
gamma2 = gamma*gamma;
b = 1 / (2*sigma*sigma);
a = b / pi;
f = 2*pi/lambda;

% filling (2n+1) x (2n+1) matrix result with the values of a 2D Gabor function
result = a*exp(-b*(xp.*xp + gamma2*(yp.*yp))) .* cos(f*xp + phi);

%%%%%%%%  NORMALIZATION  %%%%%%%%%%%%%%%%%%%%
% NORMALIZATION of positive and negative values to ensure that the integral of the kernel is 0.
% This is needed when phi is different from pi/2.
ppos = find(result > 0); %pointer list to indices of elements of result which are positive
pneg = find(result < 0); %pointer list to indices of elements of result which are negative 

pos =     sum(result(ppos));  % sum of the positive elements of result
neg = abs(sum(result(pneg))); % abs value of sum of the negative elements of result
meansum = (pos+neg)/2;
if (meansum > 0) 
    pos = pos / meansum; % normalization coefficient for negative values of result
    neg = neg / meansum; % normalization coefficient for psoitive values of result
end

result(pneg) = pos*result(pneg);
result(ppos) = neg*result(ppos);

end


方式二:

 

function [Efilter, Ofilter, gb] = gaborKernel2d_evenodd( lambda, theta, kx, ky)
%GABORKERNEL2D_EVENODD Summary of this function goes here
 % Usage:
 %  gb =  spatialgabor(im, wavelength, angle, kx, ky, showfilter)
 % Version: 2012/8/17 by watkins.song
 % Version: 1.0
 %
 % Arguments:
 %         im         - Image to be processed.
 %         wavelength - Wavelength in pixels of Gabor filter to construct
 %         angle      - Angle of filter in degrees.  An angle of 0 gives a
 %                      filter that responds to vertical features.
 %         kx, ky     - Scale factors specifying the filter sigma relative
 %                      to the wavelength of the filter.  This is done so
 %                      that the shapes of the filters are invariant to the
 %                      scale.  kx controls the sigma in the x direction
 %                      which is along the filter, and hence controls the
 %                      bandwidth of the filter.  ky controls the sigma
 %                      across the filter and hence controls the
 %                      orientational selectivity of the filter. A value of
 %                      0.5 for both kx and ky is a good starting point.
 % %    lambda = 3;
    %   theta = 90;
    %   kx = 0.5;
    %   ky = 0.5;
 % 
 %
 % Author: watkins.song
 % Email: [email protected]

 % Construct even and odd Gabor filters
sigmax = lambda*kx;
sigmay = lambda*ky;
     
sze = round(3*max(sigmax,sigmay));
[x,y] = meshgrid(-sze:sze);

evenFilter = exp(-(x.^2/sigmax^2 + y.^2/sigmay^2)/2).*cos(2*pi*(1/lambda)*x);
     
% the imaginary part of the gabor filter
oddFilter = exp(-(x.^2/sigmax^2 + y.^2/sigmay^2)/2).*sin(2*pi*(1/lambda)*x);    
 
evenFilter = imrotate(evenFilter, theta, 'bilinear','crop');
oddFilter = imrotate(oddFilter, theta, 'bilinear','crop');  
     
gb = evenFilter;
Efilter = evenFilter;
Ofilter = oddFilter;

end


 

方式三:

 

function gb = gaborKernel2d_gaborfilter( lambda, theta, phi, gamma, bw)
%GABORKERNEL2D_GABORFILTER Summary of this function goes here
% Version: 2012/8/17 by watkins.song
% Version: 1.0
%
%   LAMBDA - preferred wavelength (period of the cosine factor) [in pixels]
%   SIGMA - standard deviation of the Gaussian factor [in pixels]
%   THETA - preferred orientation [in radians]
%   PHI   - phase offset [in radians] of the cosine factor
%   GAMMA - spatial aspect ratio (of the x- and y-axis of the Gaussian elipse)
%   BANDWIDTH - spatial frequency bandwidth at half response,
%       *******************************************************************
%      
%       BANDWIDTH, SIGMA and LAMBDA are interdependent. To use BANDWIDTH, 
%       the input value of one of SIGMA or LAMBDA must be 0. Otherwise BANDWIDTH is ignored.
%       The actual value of the parameter whose input value is 0 is computed inside the 
%       function from the input vallues of BANDWIDTH and the other
%       parameter.
%                            -1     x'^2 + y'^2             
%%% G(x,y,theta,f) =  exp ([----{-----------------})*cos(2*pi*f*x'+phi);
%                             2     sigma*sigma
%%% x' = x*cos(theta)+y*sin(theta);
%%% y' = y*cos(theta)-x*sin(theta);
%
% Author: watkins.song
% Email: [email protected]

% bw    = bandwidth, (1)
% gamma = aspect ratio, (0.5)
% psi   = phase shift, (0)
% lambda= wave length, (>=2)
% theta = angle in rad, [0 pi)
 
sigma = lambda/pi*sqrt(log(2)/2)*(2^bw+1)/(2^bw-1);
sigma_x = sigma;
sigma_y = sigma/gamma;

sz=fix(8*max(sigma_y,sigma_x));
if mod(sz,2)==0
    sz=sz+1;
end

% alternatively, use a fixed size
% sz = 60;
 
[x y]=meshgrid(-fix(sz/2):fix(sz/2),fix(sz/2):-1:fix(-sz/2));
% x (right +)
% y (up +)

% Rotation 
x_theta = x*cos(theta)+y*sin(theta);
y_theta = -x*sin(theta)+y*cos(theta);
 
gb=exp(-0.5*(x_theta.^2/sigma_x^2+y_theta.^2/sigma_y^2)).*cos(2*pi/lambda*x_theta+phi);

end


 

方式四:

 

function gb = gaborKernel2d_wiki( lambda, theta, phi, gamma, bandwidth)
% GABORKERNEL2D_WIKI 改写的来自wiki的gabor函数
% Version: 2012/8/17 by watkins.song
% Version: 1.0
%
%   LAMBDA - preferred wavelength (period of the cosine factor) [in pixels]
%   SIGMA - standard deviation of the Gaussian factor [in pixels]
%   THETA - preferred orientation [in radians]
%   PHI   - phase offset [in radians] of the cosine factor
%   GAMMA - spatial aspect ratio (of the x- and y-axis of the Gaussian elipse)
%   BANDWIDTH - spatial frequency bandwidth at half response,
%       *******************************************************************
%      
%       BANDWIDTH, SIGMA and LAMBDA are interdependent. To use BANDWIDTH, 
%       the input value of one of SIGMA or LAMBDA must be 0. Otherwise BANDWIDTH is ignored.
%       The actual value of the parameter whose input value is 0 is computed inside the 
%       function from the input vallues of BANDWIDTH and the other
%       parameter.
%                            -1     x'^2 + y'^2             
%%% G(x,y,theta,f) =  exp ([----{-----------------})*cos(2*pi*f*x'+phi);
%                             2     sigma*sigma
%%% x' = x*cos(theta)+y*sin(theta);
%%% y' = y*cos(theta)-x*sin(theta);
%
% Author: watkins.song
% Email: [email protected]


% calculation of the ratio sigma/lambda from BANDWIDTH 
% according to Kruizinga and Petkov, 1999 IEEE Trans on Image Processing 8 (10) p.1396
% note that in Matlab log means ln  
slratio = (1/pi) * sqrt( (log(2)/2) ) * ( (2^bandwidth + 1) / (2^bandwidth - 1) );

% calcuate sigma
sigma = slratio * lambda;

sigma_x = sigma;
sigma_y = sigma/gamma;

% Bounding box
nstds = 4;
xmax = max(abs(nstds*sigma_x*cos(theta)),abs(nstds*sigma_y*sin(theta)));
xmax = ceil(max(1,xmax));
ymax = max(abs(nstds*sigma_x*sin(theta)),abs(nstds*sigma_y*cos(theta)));
ymax = ceil(max(1,ymax));
xmin = -xmax; ymin = -ymax;
[x,y] = meshgrid(xmin:xmax,ymin:ymax);

% Rotation 
x_theta = x*cos(theta) + y*sin(theta);
y_theta = -x*sin(theta) + y*cos(theta);

% Gabor Function
gb= exp(-.5*(x_theta.^2/sigma_x^2+y_theta.^2/sigma_y^2)).*cos(2*pi/lambda*x_theta+phi);

end


 

方式五:

 

function [GaborReal, GaborImg] = gaborKernel_matlab( GaborH, GaborW, U, V, sigma)
%GABORKERNEL_MATLAB generate very beautiful gabor filter
% Version: 2012/8/17 by watkins.song
% Version: 1.0
% 用以生成 Gabor 
% GaborReal: 核实部 GaborImg: 虚部
% GaborH,GaborW: Gabor窗口 高宽.
% U,V: 方向 大小
%            ||Ku,v||^2
% G(Z) = ---------------- exp(-||Ku,v||^2 * Z^2)/(2*sigma*sigma)(exp(i*Ku,v*Z)-exp(-sigma*sigma/2))
%          sigma*sigma
%
% 利用另外一个gabor函数来生成gabor filter, 通过u,v表示方向和尺度.
% 这里的滤波器模板的大小是不变的,变化的只有滤波器的波长和方向
% v: 代表波长
% u: 代表方向
% 缺省输入前2个参数,后面参数 Kmax=2.5*pi/2, f=sqrt(2), sigma=1.5*pi;
% GaborH, GaborW, Gabor模板大小
% U,方向因子{0,1,2,3,4,5,6,7}
% V,大小因子{0,1,2,3,4}
% Author: watkins.song
% Email: [email protected]

HarfH = fix(GaborH/2);
HarfW = fix(GaborW/2);

Qu = pi*U/8;
sqsigma = sigma*sigma;
Kv = 2.5*pi*(2^(-(V+2)/2));
%Kv = Kmax/(f^V);
postmean = exp(-sqsigma/2);

for j = -HarfH : HarfH
    for i =  -HarfW : HarfW
      
        tmp1 = exp(-(Kv*Kv*(j*j+i*i)/(2*sqsigma)));
        tmp2 = cos(Kv*cos(Qu)*i+Kv*sin(Qu)*j) - postmean;
        %tmp3 = sin(Kv*cos(Qu)*i+Kv*sin(Qu)*j) - exp(-sqsigma/2);
        tmp3 = sin(Kv*cos(Qu)*i+Kv*sin(Qu)*j);
       
        GaborReal(j+HarfH+1, i+HarfW+1) = Kv*Kv*tmp1*tmp2/sqsigma;
        GaborImg(j+HarfH+1, i+HarfW+1) = Kv*Kv*tmp1*tmp3/sqsigma;
    end
end

end


 

最后调用方式都一样:

 

% 测试用程序
theta = [0 pi/8 2*pi/8 3*pi/8 4*pi/8 5*pi/8 6*pi/8 7*pi/8];
lambda = [4 6 8 10 12];
phi = 0;
gamma = 1;
bw = 0.5;

% 计算每个滤波器
figure;
for i = 1:5
    for j = 1:8
        gaborFilter=gaborKernel2d(lambda(i), theta(j), phi, gamma, bw);
        % 查看每一个滤波器
        %figure;
        %imshow(real(gaborFilter),[]);
        % 将所有的滤波器放到一张图像中查看,查看滤波器组
        subplot(5,8,(i-1)*8+j);
        imshow(real(gaborFilter),[]);
    end
end


 

更多详细信息请查看java教程网 http://www.itchm.com/forum-59-1.html
相关标签: Algorithms