欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

Ordered Dict & popitem 先进先出&后进先出

程序员文章站 2022-03-14 11:01:37
...

 

1.OrderedDict保存的东西

import torch
state_dict = torch.load("resnet18.pth")

for i in state_dict:
    print(i)

------------------------------------------
conv1.weight
bn1.running_mean
bn1.running_var
bn1.weight
bn1.bias
layer1.0.conv1.weight
layer1.0.bn1.running_mean
layer1.0.bn1.running_var
layer1.0.bn1.weight
layer1.0.bn1.bias
layer1.0.conv2.weight
layer1.0.bn2.running_mean
layer1.0.bn2.running_var
layer1.0.bn2.weight
layer1.0.bn2.bias
layer1.1.conv1.weight
layer1.1.bn1.running_mean
layer1.1.bn1.running_var
layer1.1.bn1.weight
layer1.1.bn1.bias
layer1.1.conv2.weight
layer1.1.bn2.running_mean
layer1.1.bn2.running_var
layer1.1.bn2.weight
layer1.1.bn2.bias
layer2.0.conv1.weight
layer2.0.bn1.running_mean
layer2.0.bn1.running_var
layer2.0.bn1.weight
layer2.0.bn1.bias
layer2.0.conv2.weight
layer2.0.bn2.running_mean
layer2.0.bn2.running_var
layer2.0.bn2.weight
layer2.0.bn2.bias
layer2.0.downsample.0.weight
layer2.0.downsample.1.running_mean
layer2.0.downsample.1.running_var
layer2.0.downsample.1.weight
layer2.0.downsample.1.bias
layer2.1.conv1.weight
layer2.1.bn1.running_mean
layer2.1.bn1.running_var
layer2.1.bn1.weight
layer2.1.bn1.bias
layer2.1.conv2.weight
layer2.1.bn2.running_mean
layer2.1.bn2.running_var
layer2.1.bn2.weight
layer2.1.bn2.bias
layer3.0.conv1.weight
layer3.0.bn1.running_mean
layer3.0.bn1.running_var
layer3.0.bn1.weight
layer3.0.bn1.bias
layer3.0.conv2.weight
layer3.0.bn2.running_mean
layer3.0.bn2.running_var
layer3.0.bn2.weight
layer3.0.bn2.bias
layer3.0.downsample.0.weight
layer3.0.downsample.1.running_mean
layer3.0.downsample.1.running_var
layer3.0.downsample.1.weight
layer3.0.downsample.1.bias
layer3.1.conv1.weight
layer3.1.bn1.running_mean
layer3.1.bn1.running_var
layer3.1.bn1.weight
layer3.1.bn1.bias
layer3.1.conv2.weight
layer3.1.bn2.running_mean
layer3.1.bn2.running_var
layer3.1.bn2.weight
layer3.1.bn2.bias
layer4.0.conv1.weight
layer4.0.bn1.running_mean
layer4.0.bn1.running_var
layer4.0.bn1.weight
layer4.0.bn1.bias
layer4.0.conv2.weight
layer4.0.bn2.running_mean
layer4.0.bn2.running_var
layer4.0.bn2.weight
layer4.0.bn2.bias
layer4.0.downsample.0.weight
layer4.0.downsample.1.running_mean
layer4.0.downsample.1.running_var
layer4.0.downsample.1.weight
layer4.0.downsample.1.bias
layer4.1.conv1.weight
layer4.1.bn1.running_mean
layer4.1.bn1.running_var
layer4.1.bn1.weight
layer4.1.bn1.bias
layer4.1.conv2.weight
layer4.1.bn2.running_mean
layer4.1.bn2.running_var
layer4.1.bn2.weight
layer4.1.bn2.bias
fc.weight
fc.bias

2.last = False,先进先出

import torch
state_dict = torch.load("resnet18.pth")

state_dict2 = state_dict.popitem(last = False)
for i in state_dict:
    print(i)
-------------------------------
bn1.running_mean
bn1.running_var
bn1.weight
bn1.bias
layer1.0.conv1.weight
layer1.0.bn1.running_mean
layer1.0.bn1.running_var
layer1.0.bn1.weight
layer1.0.bn1.bias
layer1.0.conv2.weight
layer1.0.bn2.running_mean
layer1.0.bn2.running_var
layer1.0.bn2.weight
layer1.0.bn2.bias
layer1.1.conv1.weight
layer1.1.bn1.running_mean
layer1.1.bn1.running_var
layer1.1.bn1.weight
layer1.1.bn1.bias
layer1.1.conv2.weight
layer1.1.bn2.running_mean
layer1.1.bn2.running_var
layer1.1.bn2.weight
layer1.1.bn2.bias
layer2.0.conv1.weight
layer2.0.bn1.running_mean
layer2.0.bn1.running_var
layer2.0.bn1.weight
layer2.0.bn1.bias
layer2.0.conv2.weight
layer2.0.bn2.running_mean
layer2.0.bn2.running_var
layer2.0.bn2.weight
layer2.0.bn2.bias
layer2.0.downsample.0.weight
layer2.0.downsample.1.running_mean
layer2.0.downsample.1.running_var
layer2.0.downsample.1.weight
layer2.0.downsample.1.bias
layer2.1.conv1.weight
layer2.1.bn1.running_mean
layer2.1.bn1.running_var
layer2.1.bn1.weight
layer2.1.bn1.bias
layer2.1.conv2.weight
layer2.1.bn2.running_mean
layer2.1.bn2.running_var
layer2.1.bn2.weight
layer2.1.bn2.bias
layer3.0.conv1.weight
layer3.0.bn1.running_mean
layer3.0.bn1.running_var
layer3.0.bn1.weight
layer3.0.bn1.bias
layer3.0.conv2.weight
layer3.0.bn2.running_mean
layer3.0.bn2.running_var
layer3.0.bn2.weight
layer3.0.bn2.bias
layer3.0.downsample.0.weight
layer3.0.downsample.1.running_mean
layer3.0.downsample.1.running_var
layer3.0.downsample.1.weight
layer3.0.downsample.1.bias
layer3.1.conv1.weight
layer3.1.bn1.running_mean
layer3.1.bn1.running_var
layer3.1.bn1.weight
layer3.1.bn1.bias
layer3.1.conv2.weight
layer3.1.bn2.running_mean
layer3.1.bn2.running_var
layer3.1.bn2.weight
layer3.1.bn2.bias
layer4.0.conv1.weight
layer4.0.bn1.running_mean
layer4.0.bn1.running_var
layer4.0.bn1.weight
layer4.0.bn1.bias
layer4.0.conv2.weight
layer4.0.bn2.running_mean
layer4.0.bn2.running_var
layer4.0.bn2.weight
layer4.0.bn2.bias
layer4.0.downsample.0.weight
layer4.0.downsample.1.running_mean
layer4.0.downsample.1.running_var
layer4.0.downsample.1.weight
layer4.0.downsample.1.bias
layer4.1.conv1.weight
layer4.1.bn1.running_mean
layer4.1.bn1.running_var
layer4.1.bn1.weight
layer4.1.bn1.bias
layer4.1.conv2.weight
layer4.1.bn2.running_mean
layer4.1.bn2.running_var
layer4.1.bn2.weight
layer4.1.bn2.bias
fc.weight
fc.bias

3.last = True,后进先出

import torch
state_dict = torch.load("resnet18.pth")

state_dict2 = state_dict.popitem(last = True)
for i in state_dict:
    print(i)

-------------------------------
conv1.weight
bn1.running_mean
bn1.running_var
bn1.weight
bn1.bias
layer1.0.conv1.weight
layer1.0.bn1.running_mean
layer1.0.bn1.running_var
layer1.0.bn1.weight
layer1.0.bn1.bias
layer1.0.conv2.weight
layer1.0.bn2.running_mean
layer1.0.bn2.running_var
layer1.0.bn2.weight
layer1.0.bn2.bias
layer1.1.conv1.weight
layer1.1.bn1.running_mean
layer1.1.bn1.running_var
layer1.1.bn1.weight
layer1.1.bn1.bias
layer1.1.conv2.weight
layer1.1.bn2.running_mean
layer1.1.bn2.running_var
layer1.1.bn2.weight
layer1.1.bn2.bias
layer2.0.conv1.weight
layer2.0.bn1.running_mean
layer2.0.bn1.running_var
layer2.0.bn1.weight
layer2.0.bn1.bias
layer2.0.conv2.weight
layer2.0.bn2.running_mean
layer2.0.bn2.running_var
layer2.0.bn2.weight
layer2.0.bn2.bias
layer2.0.downsample.0.weight
layer2.0.downsample.1.running_mean
layer2.0.downsample.1.running_var
layer2.0.downsample.1.weight
layer2.0.downsample.1.bias
layer2.1.conv1.weight
layer2.1.bn1.running_mean
layer2.1.bn1.running_var
layer2.1.bn1.weight
layer2.1.bn1.bias
layer2.1.conv2.weight
layer2.1.bn2.running_mean
layer2.1.bn2.running_var
layer2.1.bn2.weight
layer2.1.bn2.bias
layer3.0.conv1.weight
layer3.0.bn1.running_mean
layer3.0.bn1.running_var
layer3.0.bn1.weight
layer3.0.bn1.bias
layer3.0.conv2.weight
layer3.0.bn2.running_mean
layer3.0.bn2.running_var
layer3.0.bn2.weight
layer3.0.bn2.bias
layer3.0.downsample.0.weight
layer3.0.downsample.1.running_mean
layer3.0.downsample.1.running_var
layer3.0.downsample.1.weight
layer3.0.downsample.1.bias
layer3.1.conv1.weight
layer3.1.bn1.running_mean
layer3.1.bn1.running_var
layer3.1.bn1.weight
layer3.1.bn1.bias
layer3.1.conv2.weight
layer3.1.bn2.running_mean
layer3.1.bn2.running_var
layer3.1.bn2.weight
layer3.1.bn2.bias
layer4.0.conv1.weight
layer4.0.bn1.running_mean
layer4.0.bn1.running_var
layer4.0.bn1.weight
layer4.0.bn1.bias
layer4.0.conv2.weight
layer4.0.bn2.running_mean
layer4.0.bn2.running_var
layer4.0.bn2.weight
layer4.0.bn2.bias
layer4.0.downsample.0.weight
layer4.0.downsample.1.running_mean
layer4.0.downsample.1.running_var
layer4.0.downsample.1.weight
layer4.0.downsample.1.bias
layer4.1.conv1.weight
layer4.1.bn1.running_mean
layer4.1.bn1.running_var
layer4.1.bn1.weight
layer4.1.bn1.bias
layer4.1.conv2.weight
layer4.1.bn2.running_mean
layer4.1.bn2.running_var
layer4.1.bn2.weight
layer4.1.bn2.bias
fc.weight

作者:yuanCruise
链接:https://www.jianshu.com/p/e7e12247a7c0
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

相关标签: python