欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Pytorch反向传播中的细节-计算梯度时的默认累加操作

程序员文章站 2022-07-26 12:14:42
pytorch反向传播计算梯度默认累加今天学习pytorch实现简单的线性回归,发现了pytorch的反向传播时计算梯度采用的累加机制, 于是百度来一下,好多博客都说了累加机制,但是好多都没有说明这个...

pytorch反向传播计算梯度默认累加

今天学习pytorch实现简单的线性回归,发现了pytorch的反向传播时计算梯度采用的累加机制, 于是百度来一下,好多博客都说了累加机制,但是好多都没有说明这个累加机制到底会有啥影响, 所以我趁着自己练习的一个例子正好直观的看一下以及如何解决:

pytorch实现线性回归

先附上试验代码来感受一下:

torch.manual_seed(6)
lr = 0.01   # 学习率
result = []

# 创建训练数据
x = torch.rand(20, 1) * 10
y = 2 * x + (5 + torch.randn(20, 1)) 

# 构建线性回归函数
w = torch.randn((1), requires_grad=true)
b = torch.zeros((1), requires_grad=true)
# 这里是迭代过程,为了看pytorch的反向传播计算梯度的细节,我先迭代两次
for iteration in range(2):

    # 前向传播
    wx = torch.mul(w, x)
    y_pred = torch.add(wx, b)

    # 计算 mse loss
    loss = (0.5 * (y - y_pred) ** 2).mean()
    
    # 反向传播
    loss.backward()
    
    # 这里看一下反向传播计算的梯度
    print("w.grad:", w.grad)
    print("b.grad:", b.grad)
    
    # 更新参数
    b.data.sub_(lr * b.grad)
    w.data.sub_(lr * w.grad)

上面的代码比较简单,迭代了两次, 看一下计算的梯度结果:

w.grad: tensor([-74.6261])
b.grad: tensor([-12.5532])
w.grad: tensor([-122.9075])
b.grad: tensor([-20.9364])

然后我稍微加两行代码, 就是在反向传播上面,我手动添加梯度清零操作的代码,再感受一下结果:

torch.manual_seed(6)
lr = 0.01
result = []
# 创建训练数据
x = torch.rand(20, 1) * 10
#print(x)
y = 2 * x + (5 + torch.randn(20, 1)) 
#print(y)
# 构建线性回归函数
w = torch.randn((1), requires_grad=true)
#print(w)
b = torch.zeros((1), requires_grad=true)
#print(b)
for iteration in range(2):
    # 前向传播
    wx = torch.mul(w, x)
    y_pred = torch.add(wx, b)

    # 计算 mse loss
    loss = (0.5 * (y - y_pred) ** 2).mean()
    
    # 由于pytorch反向传播中,梯度是累加的,所以如果不想先前的梯度影响当前梯度的计算,需要手动清0
     if iteration > 0: 
        w.grad.data.zero_()
        b.grad.data.zero_()
    
    # 反向传播
    loss.backward()
    
    # 看一下梯度
    print("w.grad:", w.grad)
    print("b.grad:", b.grad)
    
    # 更新参数
    b.data.sub_(lr * b.grad)
    w.data.sub_(lr * w.grad)

w.grad: tensor([-74.6261])
b.grad: tensor([-12.5532])
w.grad: tensor([-48.2813])
b.grad: tensor([-8.3831])

从上面可以发现,pytorch在反向传播的时候,确实是默认累加上了上一次求的梯度, 如果不想让上一次的梯度影响自己本次梯度计算的话,需要手动的清零。

但是, 如果不进行手动清零的话,会有什么后果呢? 我在这次线性回归试验中,遇到的后果就是loss值反复的震荡不收敛。下面感受一下:

torch.manual_seed(6)
lr = 0.01
result = []
# 创建训练数据
x = torch.rand(20, 1) * 10
#print(x)
y = 2 * x + (5 + torch.randn(20, 1)) 
#print(y)
# 构建线性回归函数
w = torch.randn((1), requires_grad=true)
#print(w)
b = torch.zeros((1), requires_grad=true)
#print(b)

for iteration in range(1000):
    # 前向传播
    wx = torch.mul(w, x)
    y_pred = torch.add(wx, b)

    # 计算 mse loss
    loss = (0.5 * (y - y_pred) ** 2).mean()
#     print("iteration {}: loss {}".format(iteration, loss))
    result.append(loss)
    
    # 由于pytorch反向传播中,梯度是累加的,所以如果不想先前的梯度影响当前梯度的计算,需要手动清0
    #if iteration > 0: 
    #    w.grad.data.zero_()
    #    b.grad.data.zero_()
  
    # 反向传播
    loss.backward()
 
    # 更新参数
    b.data.sub_(lr * b.grad)
    w.data.sub_(lr * w.grad)
    
    if loss.data.numpy() < 1:
        break
   plt.plot(result)

上面的代码中,我没有进行手动清零,迭代1000次, 把每一次的loss放到来result中, 然后画出图像,感受一下结果:

Pytorch反向传播中的细节-计算梯度时的默认累加操作

接下来,我把手动清零的注释打开,进行每次迭代之后的手动清零操作,得到的结果:

Pytorch反向传播中的细节-计算梯度时的默认累加操作

可以看到,这个才是理想中的反向传播求导,然后更新参数后得到的loss值的变化。

总结

这次主要是记录一下,pytorch在进行反向传播计算梯度的时候的累加机制到底是什么样子? 至于为什么采用这种机制,我也搜了一下,大部分给出的结果是这样子的:

Pytorch反向传播中的细节-计算梯度时的默认累加操作

但是如果不想累加的话,可以采用手动清零的方式,只需要在每次迭代时加上即可

w.grad.data.zero_()
b.grad.data.zero_()

另外, 在搜索资料的时候,在一篇博客上看到两个不错的线性回归时pytorch的计算图在这里借用一下:

Pytorch反向传播中的细节-计算梯度时的默认累加操作
Pytorch反向传播中的细节-计算梯度时的默认累加操作

以上为个人经验,希望能给大家一个参考,也希望大家多多支持。