欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

Java魔法类:sun.misc.Unsafe

程序员文章站 2022-07-23 14:46:20
Unsafe类在jdk 源码的多个类中用到,这个类的提供了一些绕开JVM的更底层功能,基于它的实现可以提高效率。但是,它是一把双刃剑:正如它的名字所预示的那样,它是Unsafe的,它所分配的内存需要手动free(不被GC回收)。Unsafe类,提供了JNI某些功能的简单替代:确保高效性的同时,使事情 ......

Unsafe类在jdk 源码的多个类中用到,这个类的提供了一些绕开JVM的更底层功能,基于它的实现可以提高效率。但是,它是一把双刃剑:正如它的名字所预示的那样,它是Unsafe的,它所分配的内存需要手动free(不被GC回收)。Unsafe类,提供了JNI某些功能的简单替代:确保高效性的同时,使事情变得更简单。

这篇文章主要是以下文章的整理、翻译。

http://mishadoff.com/blog/java-magic-part-4-sun-dot-misc-dot-unsafe/

1. Unsafe API的大部分方法都是native实现,它由105个方法组成,主要包括以下几类:

(1)Info相关。主要返回某些低级别的内存信息:addressSize(), pageSize()

(2)Objects相关。主要提供Object和它的域操纵方法:allocateInstance(),objectFieldOffset()

(3)Class相关。主要提供Class和它的静态域操纵方法:staticFieldOffset(),defineClass(),defineAnonymousClass(),ensureClassInitialized()

(4)Arrays相关。数组操纵方法:arrayBaseOffset(),arrayIndexScale()

(5)Synchronization相关。主要提供低级别同步原语(如基于CPU的CAS(Compare-And-Swap)原语):monitorEnter(),tryMonitorEnter(),monitorExit(),compareAndSwapInt(),putOrderedInt()

(6)Memory相关。直接内存访问方法(绕过JVM堆直接操纵本地内存):allocateMemory(),copyMemory(),freeMemory(),getAddress(),getInt(),putInt()

2. Unsafe类实例的获取

Unsafe类设计只提供给JVM信任的启动类加载器所使用,是一个典型的单例模式类。它的实例获取方法如下:

public static Unsafe getUnsafe() {
    Class cc = sun.reflect.Reflection.getCallerClass(2);
    if (cc.getClassLoader() != null)
        throw new SecurityException("Unsafe");
    return theUnsafe;
}

非启动类加载器直接调用Unsafe.getUnsafe()方法会抛出SecurityException(具体原因涉及JVM类的双亲加载机制)。

解决办法有两个,其一是通过JVM参数-Xbootclasspath指定要使用的类为启动类,另外一个办法就是java反射了。

Field f = Unsafe.class.getDeclaredField("theUnsafe");
f.setAccessible(true);
Unsafe unsafe = (Unsafe) f.get(null);

通过将private单例实例暴力设置accessible为true,然后通过Field的get方法,直接获取一个Object强制转换为Unsafe。在IDE中,这些方法会被标志为Error,可以通过以下设置解决:

Preferences -> Java -> Compiler -> Errors/Warnings ->
Deprecated and restricted API -> Forbidden reference -> Warning
3. Unsafe类“有趣”的应用场景

(1)绕过类初始化方法。当你想要绕过对象构造方法、安全检查器或者没有public的构造方法时,allocateInstance()方法变得非常有用。

class A {
    private long a; // not initialized value
 
    public A() {
        this.a = 1; // initialization
    }
 
    public long a() { return this.a; }
}

以下是构造方法、反射方法和allocateInstance()的对照

A o1 = new A(); // constructor
o1.a(); // prints 1
 
A o2 = A.class.newInstance(); // reflection
o2.a(); // prints 1
 
A o3 = (A) unsafe.allocateInstance(A.class); // unsafe
o3.a(); // prints 0

allocateInstance()根本没有进入构造方法,在单例模式时,我们似乎看到了危机。

(2)内存修改

内存修改在c语言中是比较常见的,在Java中,可以用它绕过安全检查器。

考虑以下简单准入检查规则:

class Guard {
    private int ACCESS_ALLOWED = 1;
 
    public boolean giveAccess() {
        return 42 == ACCESS_ALLOWED;
    }
}

在正常情况下,giveAccess总会返回false,但事情不总是这样

Guard guard = new Guard();
guard.giveAccess();   // false, no access
 
// bypass
Unsafe unsafe = getUnsafe();
Field f = guard.getClass().getDeclaredField("ACCESS_ALLOWED");
unsafe.putInt(guard, unsafe.objectFieldOffset(f), 42); // memory corruption
 
guard.giveAccess(); // true, access granted

通过计算内存偏移,并使用putInt()方法,类的ACCESS_ALLOWED被修改。在已知类结构的时候,数据的偏移总是可以计算出来(与c++中的类中数据的偏移计算是一致的)。

(3)实现类似C语言的sizeOf()函数

通过结合Java反射和objectFieldOffset()函数实现一个C-like sizeOf()函数。

public static long sizeOf(Object o) {
    Unsafe u = getUnsafe();
    HashSet fields = new HashSet();
    Class c = o.getClass();
    while (c != Object.class) {
        for (Field f : c.getDeclaredFields()) {
            if ((f.getModifiers() & Modifier.STATIC) == 0) {
                fields.add(f);
            }
        }
        c = c.getSuperclass();
    }
 
    // get offset
    long maxSize = 0;
    for (Field f : fields) {
        long offset = u.objectFieldOffset(f);
        if (offset > maxSize) {
            maxSize = offset;
        }
    }
 
    return ((maxSize/8) + 1) * 8;   // padding
}

算法的思路非常清晰:从底层子类开始,依次取出它自己和它的所有超类的非静态域,放置到一个HashSet中(重复的只计算一次,Java是单继承),然后使用objectFieldOffset()获得一个最大偏移,最后还考虑了对齐。

在32位的JVM中,可以通过读取class文件偏移为12的long来获取size。

public static long sizeOf(Object object){
    return getUnsafe().getAddress(
        normalize(getUnsafe().getInt(object, 4L)) + 12L);
}

其中normalize()函数是一个将有符号int转为无符号long的方法

private static long normalize(int value) {
    if(value >= 0) return value;
    return (0L >>> 32) & value;
}

两个sizeOf()计算的类的尺寸是一致的。最标准的sizeOf()实现是使用java.lang.instrument,但是,它需要指定命令行参数-javaagent。

(4)实现Java浅复制

标准的浅复制方案是实现Cloneable接口或者自己实现的复制函数,它们都不是多用途的函数。通过结合sizeOf()方法,可以实现浅复制。

static Object shallowCopy(Object obj) {
    long size = sizeOf(obj);
    long start = toAddress(obj);
    long address = getUnsafe().allocateMemory(size);
    getUnsafe().copyMemory(start, address, size);
    return fromAddress(address);
}

以下的toAddress()和fromAddress()分别将对象转换到它的地址以及相反操作。

static long toAddress(Object obj) {
    Object[] array = new Object[] {obj};
    long baseOffset = getUnsafe().arrayBaseOffset(Object[].class);
    return normalize(getUnsafe().getInt(array, baseOffset));
}
 
static Object fromAddress(long address) {
    Object[] array = new Object[] {null};
    long baseOffset = getUnsafe().arrayBaseOffset(Object[].class);
    getUnsafe().putLong(array, baseOffset, address);
    return array[0];
}

以上的浅复制函数可以应用于任意java对象,它的尺寸是动态计算的。

(5)消去内存中的密码

密码字段存储在String中,但是,String的回收是受到JVM管理的。最安全的做法是,在密码字段使用完之后,将它的值覆盖。

Field stringValue = String.class.getDeclaredField("value");
stringValue.setAccessible(true);
char[] mem = (char[]) stringValue.get(password);
for (int i=0; i < mem.length; i++) {
  mem[i] = '?';
}

(6)动态加载类

标准的动态加载类的方法是Class.forName()(在编写jdbc程序时,记忆深刻),使用Unsafe也可以动态加载java 的class文件。

byte[] classContents = getClassContent();
Class c = getUnsafe().defineClass(
              null, classContents, 0, classContents.length);
    c.getMethod("a").invoke(c.newInstance(), null); // 1
getClassContent()方法,将一个class文件,读取到一个byte数组。
 
private static byte[] getClassContent() throws Exception {
    File f = new File("/home/mishadoff/tmp/A.class");
    FileInputStream input = new FileInputStream(f);
    byte[] content = new byte[(int)f.length()];
    input.read(content);
    input.close();
    return content;
}

动态加载、代理、切片等功能中可以应用。

(7)包装受检异常为运行时异常。

getUnsafe().throwException(new IOException());

当你不希望捕获受检异常时,可以这样做(并不推荐)。

(8)快速序列化

标准的java Serializable速度很慢,它还限制类必须有public无参构造函数。Externalizable好些,它需要为要序列化的类指定模式。流行的高效序列化库,比如kryo依赖于第三方库,会增加内存的消耗。可以通过getInt(),getLong(),getObject()等方法获取类中的域的实际值,将类名称等信息一起持久化到文件。kryo有使用Unsafe的尝试,但是没有具体的性能提升的数据。(http://code.google.com/p/kryo/issues/detail?id=75)

(9)在非Java堆中分配内存

使用java 的new会在堆中为对象分配内存,并且对象的生命周期内,会被JVM GC管理。

class SuperArray {
    private final static int BYTE = 1;
 
    private long size;
    private long address;
 
    public SuperArray(long size) {
        this.size = size;
        address = getUnsafe().allocateMemory(size * BYTE);
    }
 
    public void set(long i, byte value) {
        getUnsafe().putByte(address + i * BYTE, value);
    }
 
    public int get(long idx) {
        return getUnsafe().getByte(address + idx * BYTE);
    }
 
    public long size() {
        return size;
    }
}

Unsafe分配的内存,不受Integer.MAX_VALUE的限制,并且分配在非堆内存,使用它时,需要非常谨慎:忘记手动回收时,会产生内存泄露;非法的地址访问时,会导致JVM崩溃。在需要分配大的连续区域、实时编程(不能容忍JVM延迟)时,可以使用它。java.nio使用这一技术。

(10)Java并发中的应用

通过使用Unsafe.compareAndSwap()可以用来实现高效的无锁数据结构。

class CASCounter implements Counter {
    private volatile long counter = 0;
    private Unsafe unsafe;
    private long offset;

    public CASCounter() throws Exception {
        unsafe = getUnsafe();
        offset = unsafe.objectFieldOffset(CASCounter.class.getDeclaredField("counter"));
    }

    @Override
    public void increment() {
        long before = counter;
        while (!unsafe.compareAndSwapLong(this, offset, before, before + 1)) {
            before = counter;
        }
    }

    @Override
    public long getCounter() {
        return counter;
    }
}

通过测试,以上数据结构与java的原子变量的效率基本一致,Java原子变量也使用Unsafe的compareAndSwap()方法,而这个方法最终会对应到cpu的对应原语,因此,它的效率非常高。这里有一个实现无锁HashMap的方案(http://www.azulsystems.com/about_us/presentations/lock-free-hash ,这个方案的思路是:分析各个状态,创建拷贝,修改拷贝,使用CAS原语,自旋锁),在普通的服务器机器(核心<32),使用ConcurrentHashMap(JDK8以前,默认16路分离锁实现,JDK8中ConcurrentHashMap已经使用无锁实现)明显已经够用。