欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页  >  IT编程

TensorFlow实现打印每一层的输出

程序员文章站 2022-07-18 09:11:07
在test.py中可以通过如下代码直接生成带weight的pb文件,也可以通过tf官方的freeze_graph.py将ckpt转为pb文件。 constant_graph...

在test.py中可以通过如下代码直接生成带weight的pb文件,也可以通过tf官方的freeze_graph.py将ckpt转为pb文件。

constant_graph = graph_util.convert_variables_to_constants(sess, sess.graph_def,['net_loss/inference/encode/conv_output/conv_output'])
with tf.gfile.fastgfile('net_model.pb', mode='wb') as f:
  f.write(constant_graph.serializetostring())

tf1.0中通过带weight的pb文件与get_tensor_by_name函数可以获取每一层的输出

import os
import os.path as ops
import argparse
import time
import math
 
import tensorflow as tf
import glob
import numpy as np
import matplotlib.pyplot as plt
import cv2
 
os.environ["cuda_visible_devices"] = "-1"
 
gragh_path = './model.pb'
image_path = './lvds1901.jpg'
inputtensorname = 'input_tensor:0'
tensorname = 'loss/inference/encode/resize_images/resizebilinear'
filepath='./net_output.txt'
height=256
width=256
vgg_mean = [103.939, 116.779, 123.68]
 
with tf.graph().as_default():
  graph_def = tf.graphdef()
  with tf.gfile.gfile(gragh_path, 'rb') as fid:
    serialized_graph = fid.read()
    graph_def.parsefromstring(serialized_graph)
 
    tf.import_graph_def(graph_def, name='')
 
    image = cv2.imread(image_path)
    image = cv2.resize(image, (width, height), interpolation=cv2.inter_cubic)
    image_np = np.array(image)
    image_np = image_np - vgg_mean
    image_np_expanded = np.expand_dims(image_np, axis=0)
 
    with tf.session() as sess:
      ops = tf.get_default_graph().get_operations()
      tensor_name = tensorname + ':0'
      tensor_dict = tf.get_default_graph().get_tensor_by_name(tensor_name)
      image_tensor = tf.get_default_graph().get_tensor_by_name(inputtensorname)
      output = sess.run(tensor_dict, feed_dict={image_tensor: image_np_expanded})
      
      ftxt = open(filepath,'w')
      transform = output.transpose(0, 3, 1, 2)
      transform = transform.flatten()
      weight_count = 0
      for i in transform:
        if weight_count % 10 == 0 and weight_count != 0:
          ftxt.write('\n')
        ftxt.write(str(i) + ',')
        weight_count += 1
      ftxt.close()

以上这篇tensorflow实现打印每一层的输出就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。