Python数据预处理 - 归一化与标准化
目录
归一化
数据归一化的背景介绍
在之前做聚类分析的时候我们发现,聚类的效果往往特别受其中一列数据的影响,使得原本应该散布在二维平面图上的点,变成聚集在一条线上的点,可想而知,其聚类效果肯定不理想。
左图:为所有数据都归一化之后的聚类分析散点图;
右图:为其中一列是合同金额,并且没有归一化数据的散点图;
归一化方法有两种形式,一种是把数变为(0,1)之间的小数,一种是把有量纲表达式变为无量纲表达式,成为纯量。后者常见于微波之中,也就是电路分析、信号系统、电磁波传输等,研究物理的人会比较熟悉。而像我们这些普通的数据分析师的日常工作中,不太会遇见需要归一化为无量纲表达式的情况,因此只讨论归一化到 [0,1] 的情况。
归一化一般是把数据映射到 [ 0,1 ] ,但也有归一到 [ -1,1 ] 的情况,两种情况在Python中分别可以通过MinMaxScaler 或者 MaxAbsScaler方法来实现。
MinMaxScaler:归一到 [ 0,1 ]
原理
从原理中我们注意到有一个axis=0,这表示MinMaxScaler方法默认是对每一列做这样的归一化操作,这也比较符合实际应用。
eg:将数据归一到 [ 0,1 ]
from sklearn import preprocessing
import numpy as np
x = np.array([[3., -1., 2., 613.],
[2., 0., 0., 232],
[0., 1., -1., 113],
[1., 2., -3., 489]])
min_max_scaler = preprocessing.MinMaxScaler()
x_minmax = min_max_scaler.fit_transform(x)
print(x_minmax)
运行结果:
[[1. 0. 1. 1. ] [0.66666667 0.33333333 0.6 0.238 ] [0. 0.66666667 0.4 0. ] [0.33333333 1. 0. 0.752 ]]
如果有新的测试数据进来,也想做同样的转换,那么将新的测试数据添加到原数据末尾即可
from sklearn import preprocessing
import pandas as pd
min_max_scaler = preprocessing.MinMaxScaler()
x = ([[3., -1., 2., 613.],
[2., 0., 0., 232],
[0., 1., -1., 113],
[1., 2., -3., 489]])#原数据
y = [7., 1., -4., 987]#新的测试数据
x.append(y)#将y添加到x的末尾
print('x :\n', x)
x_minmax = min_max_scaler.fit_transform(x)
print('x_minmax :\n', x_minmax)
运行结果:
x : [[3.0, -1.0, 2.0, 613.0], [2.0, 0.0, 0.0, 232], [0.0, 1.0, -1.0, 113], [1.0, 2.0, -3.0, 489], [7.0, 1.0, -4.0, 987]] x_minmax : [[0.42857143 0. 1. 0.57208238] [0.28571429 0.33333333 0.66666667 0.13615561] [0. 0.66666667 0.5 0. ] [0.14285714 1. 0.16666667 0.43020595] [1. 0.66666667 0. 1. ]]
每一列特征中的最小值变成了0,最大值变成了1.
MaxAbsScaler:归一到 [ -1,1 ]
原理与MinMaxScaler相似,
from sklearn import preprocessing
import numpy as np
x = np.array([[3., -1., 2., 613.],
[2., 0., 0., 232],
[0., 1., -1., 113],
[1., 2., -3., 489]])
max_abs_scaler = preprocessing.MaxAbsScaler()
x_train_maxsbs = max_abs_scaler.fit_transform(x)
x_train_maxsbs
运行结果:
array([[ 1. , -0.5 , 0.66666667, 1. ], [ 0.66666667, 0. , 0. , 0.37846656], [ 0. , 0.5 , -0.33333333, 0.18433931], [ 0.33333333, 1. , -1. , 0.79771615]])
如果有新的测试数据进来,和原来的表一起进行归一化:
from sklearn import preprocessing
import pandas as pd
max_abs_scaler = preprocessing.MaxAbsScaler()
x = ([[3., -1., 2., 613.],
[2., 0., 0., 232],
[0., 1., -1., 113],
[1., 2., -3., 489]])#原数据
y = [5., 1., -4., 888]#新的测试数据
x.append(y)
print('x :\n', x)
x_train_maxsbs = max_abs_scaler.fit_transform(x)
print('x_train_maxsbs :\n', x_train_maxsbs)
运行结果:
x : [[3.0, -1.0, 2.0, 613.0], [2.0, 0.0, 0.0, 232], [0.0, 1.0, -1.0, 113], [1.0, 2.0, -3.0, 489], [5.0, 1.0, -4.0, 888]] x_train_maxsbs : [[ 0.6 -0.5 0.5 0.69031532] [ 0.4 0. 0. 0.26126126] [ 0. 0.5 -0.25 0.12725225] [ 0.2 1. -0.75 0.55067568] [ 1. 0.5 -1. 1. ]]
标准化
去均值,方差规模化
数据分析的过程中,比如线性规划这一类的分析,如果有些特征的数值远远高于或低于其他数值,通常称之为独立点、异常值或噪点,那么对于受噪点影响较大的模型就无法正确地去学习其他特征。如下图所示(左图为受噪点影响,右图为无噪点影响的曲线拟合)
Standardization标准化:将特征数据的分布调整成标准正太分布,也叫高斯分布,过程为两步:去均值的中心化(均值变为0);方差的规模化(方差变为1)。
在sklearn.preprocessing中有一个scale方法,可以实现数据标准化,该方法默认按照列进行标准化。
from sklearn import preprocessing
import numpy as np
x = np.array([[1., -1., 2., 3.],
[2., 0., 0., -2],
[0., 1., -1., 0],
[1., 2., -3., 1]])
print("标准化之前的方差:", x.mean(axis=0))
print("标准化之前的标准差:", x.std(axis=0))
#标准化
x_scale = preprocessing.scale(x)
print("\n------------------\n标准化结果:\n", x_scale)
print("\n标准化之后的方差:", x_scale.mean(axis=0))
print("标准化之后的标准差:", x_scale.std(axis=0))
运行结果:
标准化之前的方差: [ 1. 0.5 -0.5 0.5] 标准化之前的标准差: [0.70710678 1.11803399 1.80277564 1.80277564] ------------------ 标准化结果: [[ 0. -1.34164079 1.38675049 1.38675049] [ 1.41421356 -0.4472136 0.2773501 -1.38675049] [-1.41421356 0.4472136 -0.2773501 -0.2773501 ] [ 0. 1.34164079 -1.38675049 0.2773501 ]] 标准化之后的方差: [0. 0. 0. 0.] 标准化之后的标准差: [1. 1. 1. 1.]
OVER!