欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

561 Array Partition I

程序员文章站 2022-07-15 23:24:15
...

题目

Given an array of 2n integers, your task is to group these integers into n pairs of integer, say (a1, b1), (a2, b2), …, (an, bn) which makes sum of min(ai, bi) for all i from 1 to n as large as possible.

Input: [1,4,3,2]
Output: 4
Explanation: n is 2, and the maximum sum of pairs is 4 = min(1, 2) + min(3, 4).

Code

public class Solution {
    public int arrayPairSum(int[] nums) {
        Arrays.sort(nums);
        int result = 0;
        for (int i = 0; i < nums.length; i += 2) {
            result += nums[i];
        }
        return result;
    }
}

Prove

Let me try to prove the algorithm…

  1. Assume in each pair i, bi >= ai.
  2. Denote Sm = min(a1, b1) + min(a2,b2) + … + min(an, bn). The biggest Sm is the answer of thisproblem. Given 1, Sm = a1 + a2 + … + an.
  3. Denote Sa = a1 + b1+ a2 + b2 + … + an + bn. Sa is constant for a given input. Denote di = |ai - bi|. Given 1, di = bi - ai.
  4. Denote Sd =d1 + d2 + … + dn. So Sa = a1 + a1 + d1 + a2 + a2 + d2 + … +an + an + dn = 2Sm + Sd => Sm = (Sa - Sd) / 2. To get the max Sm, given Sa is constant, we need to make Sd as small as possible. So this problem becomes finding pairs in an array that makes sum of di (distance between ai and bi) as small as possible. Apparently, sum of these distances of adjacent elements is the smallest. If that’snot intuitive enough, see attached picture. Case 1 has the smallest Sd.
    561 Array Partition I