欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

计算仿射变换六参数(Python)

程序员文章站 2022-07-15 23:01:37
...

       做保密处理或者坐标系转换的时候经常会用到关于空间配准的问题,那么如何根据已知点对求得坐标转换的参数是一个值得研究的问题。这里用到的编程技巧不多,关键是要用到线性代数和数值分析的知识。纵观当前地图坐标保密处理或者坐标系转换的实例,其无外乎采用旋转、平移、拉伸等方式,于是数值的计算无外乎于解n个n元一次方程组,最后通过误差分析进行拟合。

       下面就是一个形如 x' = Ax + by +C; y' = Dx + Ey +F 的六参数仿射变换的数值解法,采用Python2语言。

 

__author__ = 'Lee'
# -*- coding: utf-8 -*-

def affine_fit(from_pts, to_pts):
    q = from_pts
    p = to_pts
    if len(q) != len(p) or len(q) < 1:
        print "原始点和目标点的个数必须相同."
        return False

    dim = len(q[0])  # 维度
    if len(q) < dim:
        print "点数小于维度."
        return False

    # 新建一个空的 维度 x (维度+1) 矩阵 并填满
    c = [[0.0 for a in range(dim)] for i in range(dim+1)]
    for j in range(dim):
        for k in range(dim+1):
            for i in range(len(q)):
                qt = list(q[i]) + [1]
                c[k][j] += qt[k] * p[i][j]

    # 新建一个空的 (维度+1) x (维度+1) 矩阵 并填满
    Q = [[0.0 for a in range(dim)] + [0] for i in range(dim+1)]
    for qi in q:
        qt = list(qi) + [1]
        for i in range(dim+1):
            for j in range(dim+1):
                Q[i][j] += qt[i] * qt[j]

    # 判断原始点和目标点是否共线,共线则无解. 耗时计算,如果追求效率可以不用。
    # 其实就是解n个三元一次方程组
    def gauss_jordan(m, eps=1.0/(10**10)):
        (h, w) = (len(m), len(m[0]))
        for y in range(0, h):
            maxrow = y
            for y2 in range(y+1, h):    
                if abs(m[y2][y]) > abs(m[maxrow][y]):
                    maxrow = y2
            (m[y], m[maxrow]) = (m[maxrow], m[y])
            if abs(m[y][y]) <= eps:     
                return False
            for y2 in range(y+1, h):    
                c = m[y2][y] / m[y][y]
                for x in range(y, w):
                    m[y2][x] -= m[y][x] * c
        for y in range(h-1, 0-1, -1):  
            c = m[y][y]
            for y2 in range(0, y):
                for x in range(w-1, y-1, -1):
                    m[y2][x] -= m[y][x] * m[y2][y] / c
            m[y][y] /= c
            for x in range(h, w):       
                m[y][x] /= c
        return True

    
    M = [Q[i] + c[i] for i in range(dim+1)]
    if not gauss_jordan(M):
        print "错误,原始点和目标点也许是共线的."
        return False

    
    class transformation:
        """对象化仿射变换."""

        def To_Str(self):
            res = ""
            for j in range(dim):
                str = "x%d' = " % j
                for i in range(dim):
                    str +="x%d * %f + " % (i, M[i][j+dim+1])
                str += "%f" % M[dim][j+dim+1]
                res += str + "\n"
            return res

        def transform(self, pt):
            res = [0.0 for a in range(dim)]
            for j in range(dim):
                for i in range(dim):
                    res[j] += pt[i] * M[i][j+dim+1]
                res[j] += M[dim][j+dim+1]
            return res
    return transformation()

def test():
    from_pt = ((38671803.6437, 2578831.9242), (38407102.8445, 2504239.2774), (38122268.3963, 2358570.38514),
               (38126455.4595, 2346827.2602), (38177232.2601, 2398763.77833), (38423567.3485, 2571733.9203),
               (38636876.4495, 2543442.3694), (38754169.8762, 2662401.86536), (38410773.8815, 2558886.6518),
               (38668962.0430, 2578747.6349))  # 输入点坐标对
    to_pt = ((38671804.6165, 2578831.1944), (38407104.0875, 2504239.1898), (38122269.2925, 2358571.57626),
            (38126456.5675, 2346826.27022), (38177232.3973, 2398762.11714), (38423565.7744, 2571735.2278),
            (38636873.6217, 2543440.7216), (38754168.8662, 2662401.86101), (38410774.5621, 2558886.0921),
            (38668962.5493, 2578746.94))   # 输出点坐标对

    trn = affine_fit(from_pt, to_pt)

    if trn:
        print "转换公式:"
        print trn.To_Str()

        err = 0.0
        for i in range(len(from_pt)):
            fp = from_pt[i]
            tp = to_pt[i]
            t = trn.Transform(fp)
            print ("%s => %s ~= %s" % (fp, tuple(t), tp))
            err += ((tp[0] - t[0])**2 + (tp[1] - t[1])**2)**0.5

        print "拟合误差 = %f" % err

if __name__ == "__main__":
    test()