计算仿射变换六参数(Python)
程序员文章站
2022-07-15 23:01:37
...
做保密处理或者坐标系转换的时候经常会用到关于空间配准的问题,那么如何根据已知点对求得坐标转换的参数是一个值得研究的问题。这里用到的编程技巧不多,关键是要用到线性代数和数值分析的知识。纵观当前地图坐标保密处理或者坐标系转换的实例,其无外乎采用旋转、平移、拉伸等方式,于是数值的计算无外乎于解n个n元一次方程组,最后通过误差分析进行拟合。
下面就是一个形如 x' = Ax + by +C; y' = Dx + Ey +F 的六参数仿射变换的数值解法,采用Python2语言。
__author__ = 'Lee' # -*- coding: utf-8 -*- def affine_fit(from_pts, to_pts): q = from_pts p = to_pts if len(q) != len(p) or len(q) < 1: print "原始点和目标点的个数必须相同." return False dim = len(q[0]) # 维度 if len(q) < dim: print "点数小于维度." return False # 新建一个空的 维度 x (维度+1) 矩阵 并填满 c = [[0.0 for a in range(dim)] for i in range(dim+1)] for j in range(dim): for k in range(dim+1): for i in range(len(q)): qt = list(q[i]) + [1] c[k][j] += qt[k] * p[i][j] # 新建一个空的 (维度+1) x (维度+1) 矩阵 并填满 Q = [[0.0 for a in range(dim)] + [0] for i in range(dim+1)] for qi in q: qt = list(qi) + [1] for i in range(dim+1): for j in range(dim+1): Q[i][j] += qt[i] * qt[j] # 判断原始点和目标点是否共线,共线则无解. 耗时计算,如果追求效率可以不用。 # 其实就是解n个三元一次方程组 def gauss_jordan(m, eps=1.0/(10**10)): (h, w) = (len(m), len(m[0])) for y in range(0, h): maxrow = y for y2 in range(y+1, h): if abs(m[y2][y]) > abs(m[maxrow][y]): maxrow = y2 (m[y], m[maxrow]) = (m[maxrow], m[y]) if abs(m[y][y]) <= eps: return False for y2 in range(y+1, h): c = m[y2][y] / m[y][y] for x in range(y, w): m[y2][x] -= m[y][x] * c for y in range(h-1, 0-1, -1): c = m[y][y] for y2 in range(0, y): for x in range(w-1, y-1, -1): m[y2][x] -= m[y][x] * m[y2][y] / c m[y][y] /= c for x in range(h, w): m[y][x] /= c return True M = [Q[i] + c[i] for i in range(dim+1)] if not gauss_jordan(M): print "错误,原始点和目标点也许是共线的." return False class transformation: """对象化仿射变换.""" def To_Str(self): res = "" for j in range(dim): str = "x%d' = " % j for i in range(dim): str +="x%d * %f + " % (i, M[i][j+dim+1]) str += "%f" % M[dim][j+dim+1] res += str + "\n" return res def transform(self, pt): res = [0.0 for a in range(dim)] for j in range(dim): for i in range(dim): res[j] += pt[i] * M[i][j+dim+1] res[j] += M[dim][j+dim+1] return res return transformation() def test(): from_pt = ((38671803.6437, 2578831.9242), (38407102.8445, 2504239.2774), (38122268.3963, 2358570.38514), (38126455.4595, 2346827.2602), (38177232.2601, 2398763.77833), (38423567.3485, 2571733.9203), (38636876.4495, 2543442.3694), (38754169.8762, 2662401.86536), (38410773.8815, 2558886.6518), (38668962.0430, 2578747.6349)) # 输入点坐标对 to_pt = ((38671804.6165, 2578831.1944), (38407104.0875, 2504239.1898), (38122269.2925, 2358571.57626), (38126456.5675, 2346826.27022), (38177232.3973, 2398762.11714), (38423565.7744, 2571735.2278), (38636873.6217, 2543440.7216), (38754168.8662, 2662401.86101), (38410774.5621, 2558886.0921), (38668962.5493, 2578746.94)) # 输出点坐标对 trn = affine_fit(from_pt, to_pt) if trn: print "转换公式:" print trn.To_Str() err = 0.0 for i in range(len(from_pt)): fp = from_pt[i] tp = to_pt[i] t = trn.Transform(fp) print ("%s => %s ~= %s" % (fp, tuple(t), tp)) err += ((tp[0] - t[0])**2 + (tp[1] - t[1])**2)**0.5 print "拟合误差 = %f" % err if __name__ == "__main__": test()
上一篇: PMBOK 第二章 笔记
下一篇: Erlang截取中文问题