欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

图像处理之基于一维高斯快速模糊

程序员文章站 2022-07-15 22:38:41
...

数学基础:

二维高斯模糊的数学表达如下:

图像处理之基于一维高斯快速模糊

简单表达为G(x, y) = G(x)G(y)由此,对一个二维的像素矩阵可以分别在水平与垂直方向

进行一维高斯模糊其效果等同与二维高斯模糊效果。由于计算量的减少,速度却比二维

高斯模糊更快。

运行结果:

图像处理之基于一维高斯快速模糊

关键代码解析:

生成一维高斯核的代码如下,其中对高斯核实现归一化预处理

private float[] generateGaussianKeneral(int n, float sigma) {
	float sigma22 = 2*sigma*sigma;
	float Pi2 = 2*(float)Math.PI;
	float sqrtSigmaPi2 = (float)Math.sqrt(Pi2) * sigma ;
	int size = 2*n + 1;
	int index = 0;
	gaussianKeneral = new float[size];
	float sum = 0.0f;
	for(int i=-n; i<=n; i++) {
		float distance = i*i;
		gaussianKeneral[index] = (float)Math.exp((-distance)/sigma22)/sqrtSigmaPi2;
		//System.out.println("\t" + gaussianKeneral[index]);
		sum += gaussianKeneral[index];
		index++;
	}
	
	// nomalization to 1
	for(int i=0; i<gaussianKeneral.length; i++) {
		gaussianKeneral[i] = gaussianKeneral[i]/sum;
		//System.out.println("final gaussian data " + i + " = " + gaussianKeneral[i]);
	} 
	return gaussianKeneral;
}
实现对越界像素值的处理:

public static int clamp(float a) {
	return (int)(a < 0 ?  0 : ((a > 255) ? 255 : a));
}
全部算法源代码如下:

package com.gloomyfish.filter.study;

import java.awt.image.BufferedImage;

public class HVGaussianFilter extends AbstractBufferedImageOp {
	private float[] gaussianKeneral = null;
	private int radius = 2; // default value
	private float sigma = 10;
	public HVGaussianFilter() {
		
	}
	
	public void setSigma(float a) {
		this.sigma = a;
	}
	
	public void setRadius(int size) {
		this.radius = size;
	}
	
	public float[][] getHVGaussianKeneral() {
		float[][] hvKeneralData = new float[5][5];
		for(int i=0; i<5; i++)
		{
			for(int j=0; j<5; j++) 
			{
				hvKeneralData[i][j] = gaussianKeneral[i] * gaussianKeneral[j];
			}
		}
		return hvKeneralData;
	}
	
	@Override
	public BufferedImage filter(BufferedImage src, BufferedImage dest) {
		generateGaussianKeneral(radius, sigma);
        int width = src.getWidth();
        int height = src.getHeight();

        if ( dest == null )
        	dest = createCompatibleDestImage( src, null );

        int[] inPixels = new int[width*height];
        int[] outPixels = new int[width*height];
        getRGB( src, 0, 0, width, height, inPixels);
        blur( inPixels, outPixels, width, height); // H Gaussian
        blur( outPixels, inPixels, height, width); // V Gaussain
        setRGB(dest, 0, 0, width, height, inPixels );
        return dest;
	}

	/**
	 * <p> here is 1D Gaussian        , </p>
	 * 
	 * @param inPixels
	 * @param outPixels
	 * @param width
	 * @param height
	 */
	private void blur(int[] inPixels, int[] outPixels, int width, int height)
	{
		int subCol = 0;
		int index = 0, index2 = 0;
		float redSum=0, greenSum=0, blueSum=0;
        for(int row=0; row<height; row++) {
        	int ta = 0, tr = 0, tg = 0, tb = 0;
        	index = row;
        	for(int col=0; col<width; col++) {
        		// index = row * width + col;
        		redSum=0;
        		greenSum=0;
        		blueSum=0;
        		for(int m=-2; m<=2; m++) {
        			subCol = col + m;
        			if(subCol < 0 || subCol >= width) {
        				subCol = 0;
        			}
        			index2 = row * width + subCol;
            		ta = (inPixels[index2] >> 24) & 0xff;
                    tr = (inPixels[index2] >> 16) & 0xff;
                    tg = (inPixels[index2] >> 8) & 0xff;
                    tb = inPixels[index2] & 0xff;
                    redSum += (tr * gaussianKeneral[m + 2]);
                    greenSum += (tg * gaussianKeneral[m + 2]);
                    blueSum += (tb * gaussianKeneral[m + 2]);
        		}
        		outPixels[index] = (ta << 24) | (clamp(redSum) << 16) | (clamp(greenSum) << 8) | clamp(blueSum);
        		index += height;// correct index at here!!!, out put pixels matrix,
        	}
        }
	}
	
	public static int clamp(float a) {
		return (int)(a < 0 ?  0 : ((a > 255) ? 255 : a));
	}
	
	private float[] generateGaussianKeneral(int n, float sigma) {
		float sigma22 = 2*sigma*sigma;
		float Pi2 = 2*(float)Math.PI;
		float sqrtSigmaPi2 = (float)Math.sqrt(Pi2) * sigma ;
		int size = 2*n + 1;
		int index = 0;
		gaussianKeneral = new float[size];
		float sum = 0.0f;
		for(int i=-n; i<=n; i++) {
			float distance = i*i;
			gaussianKeneral[index] = (float)Math.exp((-distance)/sigma22)/sqrtSigmaPi2;
			//System.out.println("\t" + gaussianKeneral[index]);
			sum += gaussianKeneral[index];
			index++;
		}
		
		// nomalization to 1
		for(int i=0; i<gaussianKeneral.length; i++) {
			gaussianKeneral[i] = gaussianKeneral[i]/sum;
			//System.out.println("final gaussian data " + i + " = " + gaussianKeneral[i]);
		} 
		return gaussianKeneral;
	}

}
转载文章请务必注明!