欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

【Leetcode 1143】最长公共子序列

程序员文章站 2022-07-15 16:34:59
...

【Leetcode 1143】最长公共子序列
【Leetcode 1143】最长公共子序列

最长公共子序列(Longest Common Subsequence,简称 LCS)是一道非常经典的面试题目,因为它的解法是典型的二维动态规划,大部分比较困难的字符串问题都和这个问题一个套路,比如说编辑距离。而且,这个算法稍加改造就可以用于解决其他问题,所以说 LCS 算法是值得掌握的。

题目就是让我们求两个字符串的 LCS 长度:

输入: str1 = “abcde”, str2 = “ace”
输出: 3
解释: 最长公共子序列是 “ace”,它的长度是 3

肯定有读者会问,为啥这个问题就是动态规划来解决呢?因为子序列类型的问题,穷举出所有可能的结果都不容易,而动态规划算法做的就是穷举 + 剪枝,它俩天生一对儿。所以可以说只要涉及子序列问题,十有八九都需要动态规划来解决,往这方面考虑就对了。

下面就来手把手分析一下,这道题目如何用动态规划技巧解决。

PS:我认真写了 100 多篇题解,手把手带你刷力扣,全部发布在 LeetCode刷题套路,持续更新。建议收藏,先按照我的文章顺序刷题,掌握各种算法套路后投再入题海就如鱼得水了。

一、动态规划思路

第一步,一定要明确 dp 数组的含义。对于两个字符串的动态规划问题,套路是通用的。

比如说对于字符串 s1 和 s2,一般来说都要构造一个这样的 DP table:

【Leetcode 1143】最长公共子序列

为了方便理解此表,我们暂时认为索引是从 1 开始的,待会的代码中只要稍作调整即可。其中,dp[i][j] 的含义是:对于 s1[1…i] 和 s2[1…j],它们的 LCS 长度是 dp[i][j]。

比如上图的例子,d[2][4] 的含义就是:对于 “ac” 和 “babc”,它们的 LCS 长度是 2。我们最终想得到的答案应该是 dp[3][6]。

第二步,定义 base case。

我们专门让索引为 0 的行和列表示空串,dp[0][…] 和 dp[…][0] 都应该初始化为 0,这就是 base case。

比如说,按照刚才 dp 数组的定义,dp[0][3]=0 的含义是:对于字符串 “” 和 “bab”,其 LCS 的长度为 0。因为有一个字符串是空串,它们的最长公共子序列的长度显然应该是 0。

第三步,找状态转移方程。

这是动态规划最难的一步,不过好在这种字符串问题的套路都差不多,权且借这道题来聊聊处理这类问题的思路。

状态转移说简单些就是做选择,比如说这个问题,是求 s1 和 s2 的最长公共子序列,不妨称这个子序列为 lcs。那么对于 s1 和 s2 中的每个字符,有什么选择?很简单,两种选择,要么在 lcs 中,要么不在。
【Leetcode 1143】最长公共子序列

这个「在」和「不在」就是选择,关键是,应该如何选择呢?这个需要动点脑筋:如果某个字符应该在 lcs 中,那么这个字符肯定同时存在于 s1 和 s2 中,因为 lcs 是最长公共子序列嘛。所以本题的思路是这样:

用两个指针 i 和 j 从后往前遍历 s1 和 s2(为啥要从后往前遍历,答疑1),如果 s1[i]==s2[j],那么这个字符一定在 lcs 中;否则的话,s1[i] 和 s2[j] 这两个字符至少有一个不在 lcs 中,需要丢弃一个。先看一下递归解法,比较容易理解:

答疑1
它不是从后往前找,而是写出状态转移方程,你可以理解成通项式,就是当前的dp是基于上一次dp的结果得出,假设当text1[i] == text2[j],我们dp[i][j]的值就要更新了,那么dp[i][j]的值是怎么得出的呢,就是上一次的i,j对应的dp值+1,所以dp[i][j] = dp[i-1][j-1] +1, 而i,j的遍历是从1开始的(考虑字符串开始值为"的情况)

def longestCommonSubsequence(str1, str2) -> int:
    def dp(i, j):
        # 空串的 base case
        if i == -1 or j == -1:
            return 0
        if str1[i] == str2[j]:
            # 这边找到一个 lcs 的元素,继续往前找
            return dp(i - 1, j - 1) + 1
        else:
            # 谁能让 lcs 最长,就听谁的
            return max(dp(i-1, j), dp(i, j-1))
        
    # i 和 j 初始化为最后一个索引
    return dp(len(str1)-1, len(str2)-1)

对于第一种情况,找到一个 lcs 中的字符,同时将 i j 向前移动一位,并给 lcs 的长度加一;对于后者,则尝试两种情况,取更大的结果。

其实这段代码就是暴力解法,我们可以通过备忘录或者 DP table 来优化时间复杂度,比如通过前文描述的 DP table 来解决:

def longestCommonSubsequence(str1, str2) -> int:
    m, n = len(str1), len(str2)
    # 构建 DP table 和 base case
    dp = [[0] * (n + 1) for _ in range(m + 1)]      
    # 进行状态转移
    for i in range(1, m + 1):        #注意外层循环是二维数组的行数
        for j in range(1, n + 1):    #从1开始遍历,是包含空字符串的行,dp数组里的值均为0
            if str1[i - 1] == str2[j - 1]:     #由于包含空字符串,遍历字符串本身需要先把索引值减1
                # 找到一个 lcs 中的字符
                dp[i][j] = 1 + dp[i-1][j-1]
            else:
                dp[i][j] = max(dp[i-1][j], dp[i][j-1])
        
    return dp[-1][-1]

二、疑难解答
对于 s1[i] 和 s2[j] 不相等的情况,至少有一个字符不在 lcs 中,会不会两个字符都不在呢?比如下面这种情况:

【Leetcode 1143】最长公共子序列
所以代码是不是应该考虑这种情况,改成这样:

if str1[i - 1] == str2[j - 1]:
    # ...
else:
    dp[i][j] = max(dp[i-1][j], 
                   dp[i][j-1],
                   dp[i-1][j-1])

我一开始也有这种怀疑,其实可以这样改,也能得到正确答案,但是多此一举,因为 dp[i-1][j-1] 永远是三者中最小的,max 根本不可能取到它。

原因在于我们对 dp 数组的定义:对于 s1[1…i] 和 s2[1…j],它们的 LCS 长度是 dp[i][j]。

【Leetcode 1143】最长公共子序列
这样一看,显然 dp[i-1][j-1] 对应的 lcs 长度不可能比前两种情况大,所以没有必要参与比较。

三、总结
对于两个字符串的动态规划问题,一般来说都是像本文一样定义 DP table,因为这样定义有一个好处,就是容易写出状态转移方程,dp[i][j] 的状态可以通过之前的状态推导出来:

【Leetcode 1143】最长公共子序列

找状态转移方程的方法是,思考每个状态有哪些「选择」,只要我们能用正确的逻辑做出正确的选择,算法就能够正确运行。

参考链接:
https://leetcode-cn.com/problems/longest-common-subsequence/solution/dong-tai-gui-hua-zhi-zui-chang-gong-gong-zi-xu-lie/

https://leetcode-cn.com/problems/longest-common-subsequence/solution/shi-pin-jiang-jie-shi-yong-dong-tai-gui-hua-qiu-ji/

相关标签: Leetcode