欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

归一化特征值

程序员文章站 2022-07-15 10:55:22
...
def autoNorm(dataSet):
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    normDataSet = zeros(shape(dataSet))
    m = dataSet.shape[0]
    normDataSet = dataSet - tile(minVals, (m, 1))
    normDataSet = normDataSet / tile(ranges, (m, 1))  # element wise divide
    return normDataSet, ranges, minVals

dataset.min(0)是提取一个矩阵的每列的最小值,然后组成一个行向量,例如:

[[1,2,5],

[4,8,8],

[0,6,4]] 结果为[0,2,4]

tile(minVals, (m, 1))是把一个矩阵搞成m行倍,列为1倍,例如::tile(minVals, (4, 1))

结果为:  [[0,2,4],

                [0,2,4],

                [0,2,4],

                [0,2,4]]



相关标签: 归一化特征值