欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

算法:计算十进制数字在二进制表示1的个数

程序员文章站 2022-07-15 09:25:44
...

题目一

计算十进制数字在二进制表示 1 的个数

举个例子:

  • 十进制数字为 1 时,它的二进制表示是 001,二进制表示 1 的个数为 1;
  • 十进制数字为 2 时,它的二进制表示是 010,二进制表示 1 的个数为 1;
  • 十进制数字为 3 时,它的二进制表示是 011,二进制表示 1 的个数为 2;
  • 十进制数字为 4 时,它的二进制表示是 100,二进制表示 1 的个数为 1;
  • 十进制数字为 5 时,它的二进制表示是 101,二进制表示 1 的个数为 2;
  • 十进制数字为 6 时,它的二进制表示是 110,二进制表示 1 的个数为 2;
  • 十进制数字为 7 时,它的二进制表示是 111,二进制表示 1 的个数为 3;

时间复杂度 O(logn) 的解法

对于这个题目比较容易想到的是如下代码:

int count = 0;

while(n != 0)
{
    if(n % 2 == 1)
    {
        count++;
    }
    
    n = n >> 1;
}

上述代码主要做了两个步骤:

  • n % 2 表示对数字求模运算,也就是计算二进制的末尾是 1 还是 0,如果二进制的末尾是 1 ,则 count 自增,count 表示的是二进制表示 1 的个数;
  • n = n >> 1 表示把二进制往右移走一位,比如十进制数字 7 的二进制表示是 111 ,那么通过右移一位后,则变成 011。

这个解决方式虽然能计算出二进制表示 1 的个数,但是我们可以发现这个解法的时间复杂度是 O(logn),比如当 n 为 7 时,它的二进制表示是 111,那么它将会循环 3 次,也就是非常接近 log 以 2 为底 7 的对数的值。


题目二

程序读入一个整数 n,假设 n 不会大于 1000,请输出 1 到 n 每个数字的二进制表示 1 的个数。

时间复杂度 O(nlogn) 的解法

可能有的小伙伴说,这题目二还不简单?直接把上面的解法,增加个 for 循环不就得了。

int main() 
{
	int i, j, n, count;
	
	scanf("%d", &n);
	
	for(i = 1; i <= n; i++)
	{
		j = i;
	    count = 0;
		
    	while(j != 0)
    	{
            if(j % 2 == 1)
            {
                count++;
            }
    
    		j = j >> 1;
    	}
    	
    	printf("number:%d, count:%d\n", i, count);
	}

	return 0;
}

假设输入 7,则输出结果:

number:1, count:1
number:2, count:1
number:3, count:2
number:4, count:1
number:5, count:2
number:6, count:2
number:7, count:3
number:8, count:1

没错,用上述的解法增加个 for 循环,确实可以解决题目二的要求,这值得鼓励,但是程序的时间复杂度是时间复杂度 O(nlogn) ,运行效率不高,所以我们必须要有种精神,就是要用时间复杂度最少的方式去解决算法的问题,这样才能一次一次的进步。

时间复杂度 O(n) 的解法

请先观察下面的位运算性质:

y = x & (x - 1)

我们看到,x 和与 x -1 这两个数字做按位与运算,所以我们要以二进制的角度去思考这个问题。

比如:

  • 假设 x 是 3,它的二进制是 011;
  • 那么 x - 1 就是 2,它的二进制是 010;
  • x & (x - 1) 运算后的二进制就是 010。

那么 x & (x - 1) 实际效果等效于去掉 x 二进制表示中的最后一位 1,从而我们发现原来 y 变量与 x 变量在二进制表示中,只差一个 1。

如果我们用一个数组 f 记录相应数字二进制表示中 1 的数量,那么 f[i] 数组存放的值是 i 这个数字二进制表示中 1 的数量,从而我们可以推导得到 f[i] = f[i & (i - 1)] + 1,也就是说 i 数字比 i & (i - 1) 数字的二进制表示中的 1 的数量要多一个,这样我们通过一步计算就得到 f[i] 的结果,也就是相应数字二进制表示中 1 的数量结果。

代码如下:

int main() 
{
    int n,i;
    int f[1001];
    
    f[0] = 0;
    
    scanf("%d", &n);

    for(i = 1; i <= n; i++) 
    {
        f[i] = f[i & (i - 1)] + 1;
    }
    
    for(i = 1; i <= n; i++) 
    {
        printf("%d ", f[i]);
    }
    printf("\n");
    
    return 0;
}

这个程序的过程如下:

  • 首先先读入一个整数 n,代表要求解的范围;
  • 然后循环 n 次,每一次通过 f[i] = f[i & (i - 1)] + 1 计算得到 f[i] 的值,也就是数字的二进制表示 1 的个数;
  • 最后输出 1 到 n 中每个数字二进制表示中 1 的个数。

针对这个解法,程序的时间复杂度是 O(n)。

相关标签: 数据结构与算法