数据压缩第十二次作业
MPEG音频编码实验
实验要求:
1.理解感知音频编码的设计思想
2.理解心理声学模型的实现过程
3.理解码率分配的实现思路
4.理解程序设计的基本框架
5.输出音频的采样率和目标码率
6.选择某个数据帧,输出该帧所分配的比特数、该帧的比例因子、该帧的比特分配结果
一、理解感知音频编码的设计思想
从编码器原理图可以看出,一段PCM码流有两条处理路径:一个是通过滤波器组,将PCM样本变换到32个子带的频域信号,形成块并且通过线性量化器,形成颗粒,最终形成帧比特流。另一条是先对码流进行1024点FFT后通过心理声学模型,并且经过动态比特分配,再通过边信息编码,最终形成帧比特流。
二、理解心理声学模型的实现过程
心理声学模型是指听觉系统中存在一个听觉阈值点评,低于这个电平的声音信号就听不到。听觉阈值的大小随声音频率的变化而变化;一个人是否能听到声音取决于声音的频率,以及声音的幅度是否高于这种频域下的听觉阈值。
MPEG-I标准定义了两个模型:心理声学模型1、2.这里着重讨论心理声学模型1
步骤:1.将样本变换到频域(采用HAnnah加权和DFT)
2.确定声压级别
3.考虑安静时阈值
4.将音频信号分解成“乐音”和“非乐音/噪声”部分:因为两种信号 的掩蔽能力不同
5.消除音调和非音调掩蔽成分
6.单个掩蔽阈值的计算
7.全局掩蔽阈值的计算
8.选择出本自带中最小的阈值作为子带阈值
9.计算每个子带信号掩蔽值,并将SMR传递给编码单元
SMR=信号能量/掩蔽阈值
三、理解码率分配的实现思路
1.比例因子的取值和编码
对各个子带每12个样点进行一次比例因子计算。先定出12个样点中绝对值的最大值。查比例因子表中比这个最大值大的 最小值作为比例因子。用6比特表示。
第2层的一帧对应36个子带样值,是第1层的三倍,原则上要传三个比例因子。为了降低比例因子的传输码率,采用了利用人耳时域掩蔽特性的编码策略。
每帧中每个子带的三个比例因子被一起考虑,划分成特定的几种模式。根据这些模式,1个、2个或3个比例因 子和比例因子选择信息(每子带2比特)一起被传送。如果一个比例因子和下一个只有很小的差别,就只传送大的一个,这种情况对于稳态信号经常出现。
2.比特分配及编码
对每个子带计算掩蔽-噪声比MNR,是信噪比SNR-信掩比
SMR,即:MNR = SNR – SMR
使整个一帧和每个子带的总噪声-掩蔽比最小。这是一个循环过程,每一次循环使获益 最大的子带的量化级别增加一级,当然所用比特数不能超过一帧所能提供的最大数目。
第1层一帧用4比特给每个子带的比特分配信息编码;而第2层只在低频段用4比特,高频段则用2比特。
3.子带样值的量化和编码
输入以12个样本为一组,每组样本经过时间-频率变换之后进行一次比特分配并记录一个比例因子(scale factor)
比特分配信息告诉解码器每个样本由几位表示,比例因子用6比特表示,解码器使用这个6比特的比例因子乘逆量化器的每个输出样本值,以恢复被量化的子带值。比例因子的作用是充分利用量化器的量化范围, 通过比特分配和比例因子相配合,可以表示动态范围超过120dB的样本 。
第2层中,量化级别的数目随子带的不同而不同,但量化等级仍然覆盖了3~65535的范围,同时子带不被分配给比特的概率增加了,没有分配给比特的子带就不被量化。低频段的量化等级有15级,中频段7级,高频段只有3级
4.数据帧包装
帧头(Header):每帧开始的头32个比特,包含有同步和状
态比特流信息,在所有层都相同,同步码字为12bit全1码
(1111,1111,1111)。
误码检测CRC:使用一种16bit奇偶校验字,可供在比特流中作检测误码用。在所有层都相同。
声音数据:由比特分配表、比例因子选择信息、比例因子和子带样值组成,其中子带样值是声音数据的最大部分。每层声音数据不同。
辅助数据:用作辅助数据比特流。
四、理解程序设计的基本框架
int main (int argc, char **argv)
{
typedef double SBS[2][3][SCALE_BLOCK][SBLIMIT];
SBS *sb_sample;
typedef double JSBS[3][SCALE_BLOCK][SBLIMIT];
JSBS *j_sample;
typedef double IN[2][HAN_SIZE];
IN *win_que;
typedef unsigned int SUB[2][3][SCALE_BLOCK][SBLIMIT];
SUB *subband;
frame_info frame;
frame_header header;
char original_file_name[MAX_NAME_SIZE];
char encoded_file_name[MAX_NAME_SIZE];
short **win_buf;
static short buffer[2][1152];
static unsigned int bit_alloc[2][SBLIMIT], scfsi[2][SBLIMIT];
static unsigned int scalar[2][3][SBLIMIT], j_scale[3][SBLIMIT];
static double smr[2][SBLIMIT], lgmin[2][SBLIMIT], max_sc[2][SBLIMIT];
// FLOAT snr32[32];
short sam[2][1344]; /* was [1056]; */
int model, nch, error_protection;
static unsigned int crc;
int sb, ch, adb;
unsigned long frameBits, sentBits = 0;
unsigned long num_samples;
int lg_frame;
int i;
/* Used to keep the SNR values for the fast/quick psy models */
static FLOAT smrdef[2][32];
static int psycount = 0;
extern int minimum;
time_t start_time, end_time;
int total_time;
sb_sample = (SBS *) mem_alloc (sizeof (SBS), "sb_sample");
j_sample = (JSBS *) mem_alloc (sizeof (JSBS), "j_sample");
win_que = (IN *) mem_alloc (sizeof (IN), "Win_que");
subband = (SUB *) mem_alloc (sizeof (SUB), "subband");
win_buf = (short **) mem_alloc (sizeof (short *) * 2, "win_buf");
/* clear buffers */
memset ((char *) buffer, 0, sizeof (buffer));
memset ((char *) bit_alloc, 0, sizeof (bit_alloc));
memset ((char *) scalar, 0, sizeof (scalar));
memset ((char *) j_scale, 0, sizeof (j_scale));
memset ((char *) scfsi, 0, sizeof (scfsi));
memset ((char *) smr, 0, sizeof (smr));
memset ((char *) lgmin, 0, sizeof (lgmin));
memset ((char *) max_sc, 0, sizeof (max_sc));
//memset ((char *) snr32, 0, sizeof (snr32));
memset ((char *) sam, 0, sizeof (sam));
global_init ();
header.extension = 0;
frame.header = &header;
frame.tab_num = -1; /* no table loaded */
frame.alloc = NULL;
header.version = MPEG_AUDIO_ID; /* Default: MPEG-1 */
total_time = 0;
time(&start_time);
programName = argv[0];
if (argc == 1) /* no command-line args */
short_usage ();
else
parse_args (argc, argv, &frame, &model, &num_samples, original_file_name,
encoded_file_name);
print_config (&frame, &model, original_file_name, encoded_file_name);
/* this will load the alloc tables and do some other stuff */
hdr_to_frps (&frame);
nch = frame.nch;
error_protection = header.error_protection;
while (get_audio (musicin, buffer, num_samples, nch, &header) > 0) {
if (glopts.verbosity > 1)
if (++frameNum % 10 == 0)
fprintf (stderr, "[%4u]\r", frameNum);
fflush (stderr);
win_buf[0] = &buffer[0][0];
win_buf[1] = &buffer[1][0];
adb = available_bits (&header, &glopts);
lg_frame = adb / 8;
if (header.dab_extension) {
/* in 24 kHz we always have 4 bytes */
if (header.sampling_frequency == 1)
header.dab_extension = 4;
/* You must have one frame in memory if you are in DAB mode */
/* in conformity of the norme ETS 300 401 http://www.etsi.org */
/* see bitstream.c */
if (frameNum == 1)
minimum = lg_frame + MINIMUM;
adb -= header.dab_extension * 8 + header.dab_length * 8 + 16;
}
{
int gr, bl, ch;
/* New polyphase filter
Combines windowing and filtering. Ricardo Feb'03 */
for( gr = 0; gr < 3; gr++ )
for ( bl = 0; bl < 12; bl++ )
for ( ch = 0; ch < nch; ch++ )
WindowFilterSubband( &buffer[ch][gr * 12 * 32 + 32 * bl], ch,
&(*sb_sample)[ch][gr][bl][0] );
}
//以上是多相滤波器组的实现,将PCM样本变换到32个子带的频域信号
#ifdef REFERENCECODE
{
/* Old code. left here for reference */
int gr, bl, ch;
for (gr = 0; gr < 3; gr++)
for (bl = 0; bl < SCALE_BLOCK; bl++)
for (ch = 0; ch < nch; ch++) {
window_subband (&win_buf[ch], &(*win_que)[ch][0], ch);
filter_subband (&(*win_que)[ch][0], &(*sb_sample)[ch][gr][bl][0]);
}
}
#endif
#ifdef NEWENCODE
scalefactor_calc_new(*sb_sample, scalar, nch, frame.sblimit);
find_sf_max (scalar, &frame, max_sc);
if (frame.actual_mode == MPG_MD_JOINT_STEREO) {
/* this way we calculate more mono than we need */
/* but it is cheap */
combine_LR_new (*sb_sample, *j_sample, frame.sblimit);
scalefactor_calc_new (j_sample, &j_scale, 1, frame.sblimit);
}
#else
scale_factor_calc (*sb_sample, scalar, nch, frame.sblimit);
pick_scale (scalar, &frame, max_sc);
if (frame.actual_mode == MPG_MD_JOINT_STEREO) {
/* this way we calculate more mono than we need */
/* but it is cheap */
combine_LR (*sb_sample, *j_sample, frame.sblimit);
scale_factor_calc (j_sample, &j_scale, 1, frame.sblimit);
}
#endif
//以下为根据心理声学模型计算SMR的过程
if ((glopts.quickmode == TRUE) && (++psycount % glopts.quickcount != 0)) {
/* We're using quick mode, so we're only calculating the model every
'quickcount' frames. Otherwise, just copy the old ones across */
for (ch = 0; ch < nch; ch++) {
for (sb = 0; sb < SBLIMIT; sb++)
smr[ch][sb] = smrdef[ch][sb];
}
} else {
/* calculate the psymodel */
switch (model) {
case -1:
psycho_n1 (smr, nch);
break;
case 0: /* Psy Model A */
psycho_0 (smr, nch, scalar, (FLOAT) s_freq[header.version][header.sampling_frequency] * 1000);
break;
case 1:
psycho_1 (buffer, max_sc, smr, &frame);
break;
case 2:
for (ch = 0; ch < nch; ch++) {
psycho_2 (&buffer[ch][0], &sam[ch][0], ch, &smr[ch][0], //snr32,
(FLOAT) s_freq[header.version][header.sampling_frequency] *
1000, &glopts);
}
break;
case 3:
/* Modified psy model 1 */
psycho_3 (buffer, max_sc, smr, &frame, &glopts);
break;
case 4:
/* Modified Psycho Model 2 */
for (ch = 0; ch < nch; ch++) {
psycho_4 (&buffer[ch][0], &sam[ch][0], ch, &smr[ch][0], // snr32,
(FLOAT) s_freq[header.version][header.sampling_frequency] *
1000, &glopts);
}
break;
case 5:
/* Model 5 comparse model 1 and 3 */
psycho_1 (buffer, max_sc, smr, &frame);
fprintf(stdout,"1 ");
smr_dump(smr,nch);
psycho_3 (buffer, max_sc, smr, &frame, &glopts);
fprintf(stdout,"3 ");
smr_dump(smr,nch);
break;
case 6:
/* Model 6 compares model 2 and 4 */
for (ch = 0; ch < nch; ch++)
psycho_2 (&buffer[ch][0], &sam[ch][0], ch, &smr[ch][0], //snr32,
(FLOAT) s_freq[header.version][header.sampling_frequency] *
1000, &glopts);
fprintf(stdout,"2 ");
smr_dump(smr,nch);
for (ch = 0; ch < nch; ch++)
psycho_4 (&buffer[ch][0], &sam[ch][0], ch, &smr[ch][0], // snr32,
(FLOAT) s_freq[header.version][header.sampling_frequency] *
1000, &glopts);
fprintf(stdout,"4 ");
smr_dump(smr,nch);
break;
case 7:
fprintf(stdout,"Frame: %i\n",frameNum);
/* Dump the SMRs for all models */
psycho_1 (buffer, max_sc, smr, &frame);
fprintf(stdout,"1");
smr_dump(smr, nch);
psycho_3 (buffer, max_sc, smr, &frame, &glopts);
fprintf(stdout,"3");
smr_dump(smr,nch);
for (ch = 0; ch < nch; ch++)
psycho_2 (&buffer[ch][0], &sam[ch][0], ch, &smr[ch][0], //snr32,
(FLOAT) s_freq[header.version][header.sampling_frequency] *
1000, &glopts);
fprintf(stdout,"2");
smr_dump(smr,nch);
for (ch = 0; ch < nch; ch++)
psycho_4 (&buffer[ch][0], &sam[ch][0], ch, &smr[ch][0], // snr32,
(FLOAT) s_freq[header.version][header.sampling_frequency] *
1000, &glopts);
fprintf(stdout,"4");
smr_dump(smr,nch);
break;
case 8:
/* Compare 0 and 4 */
psycho_n1 (smr, nch);
fprintf(stdout,"0");
smr_dump(smr,nch);
for (ch = 0; ch < nch; ch++)
psycho_4 (&buffer[ch][0], &sam[ch][0], ch, &smr[ch][0], // snr32,
(FLOAT) s_freq[header.version][header.sampling_frequency] *
1000, &glopts);
fprintf(stdout,"4");
smr_dump(smr,nch);
break;
default:
fprintf (stderr, "Invalid psy model specification: %i\n", model);
exit (0);
}
if (glopts.quickmode == TRUE)
/* copy the smr values and reuse them later */
for (ch = 0; ch < nch; ch++) {
for (sb = 0; sb < SBLIMIT; sb++)
smrdef[ch][sb] = smr[ch][sb];
}
if (glopts.verbosity > 4)
smr_dump(smr, nch);
}
//以下是比特分配的过程,并且必要时使用CRC进行纠错
#ifdef NEWENCODE
sf_transmission_pattern (scalar, scfsi, &frame);
main_bit_allocation_new (smr, scfsi, bit_alloc, &adb, &frame, &glopts);
//main_bit_allocation (smr, scfsi, bit_alloc, &adb, &frame, &glopts);
if (error_protection)
CRC_calc (&frame, bit_alloc, scfsi, &crc);
write_header (&frame, &bs);
//encode_info (&frame, &bs);
if (error_protection)
putbits (&bs, crc, 16);
write_bit_alloc (bit_alloc, &frame, &bs);
//encode_bit_alloc (bit_alloc, &frame, &bs);
write_scalefactors(bit_alloc, scfsi, scalar, &frame, &bs);
//encode_scale (bit_alloc, scfsi, scalar, &frame, &bs);
subband_quantization_new (scalar, *sb_sample, j_scale, *j_sample, bit_alloc,
*subband, &frame);
//subband_quantization (scalar, *sb_sample, j_scale, *j_sample, bit_alloc,
// *subband, &frame);
write_samples_new(*subband, bit_alloc, &frame, &bs);
//sample_encoding (*subband, bit_alloc, &frame, &bs);
#else
transmission_pattern (scalar, scfsi, &frame);
main_bit_allocation (smr, scfsi, bit_alloc, &adb, &frame, &glopts);
if (error_protection)
CRC_calc (&frame, bit_alloc, scfsi, &crc);
encode_info (&frame, &bs);
if (error_protection)
encode_CRC (crc, &bs);
encode_bit_alloc (bit_alloc, &frame, &bs);
encode_scale (bit_alloc, scfsi, scalar, &frame, &bs);
subband_quantization (scalar, *sb_sample, j_scale, *j_sample, bit_alloc,
*subband, &frame);
sample_encoding (*subband, bit_alloc, &frame, &bs);
#endif
/* If not all the bits were used, write out a stack of zeros */
for (i = 0; i < adb; i++)
put1bit (&bs, 0);
if (header.dab_extension) {
/* Reserve some bytes for X-PAD in DAB mode */
putbits (&bs, 0, header.dab_length * 8);
for (i = header.dab_extension - 1; i >= 0; i--) {
CRC_calcDAB (&frame, bit_alloc, scfsi, scalar, &crc, i);
/* this crc is for the previous frame in DAB mode */
if (bs.buf_byte_idx + lg_frame < bs.buf_size)
bs.buf[bs.buf_byte_idx + lg_frame] = crc;
/* reserved 2 bytes for F-PAD in DAB mode */
putbits (&bs, crc, 8);
}
putbits (&bs, 0, 16);
}
frameBits = sstell (&bs) - sentBits;
if (frameBits % 8) { /* a program failure */
fprintf (stderr, "Sent %ld bits = %ld slots plus %ld\n", frameBits,
frameBits / 8, frameBits % 8);
fprintf (stderr, "If you are reading this, the program is broken\n");
fprintf (stderr, "email [mfc at NOTplanckenerg.com] without the NOT\n");
fprintf (stderr, "with the command line arguments and other info\n");
exit (0);
}
sentBits += frameBits;
}
close_bit_stream_w (&bs);
if ((glopts.verbosity > 1) && (glopts.vbr == TRUE)) {
int i;
#ifdef NEWENCODE
extern int vbrstats_new[15];
#else
extern int vbrstats[15];
#endif
fprintf (stdout, "VBR stats:\n");
for (i = 1; i < 15; i++)
fprintf (stdout, "%4i ", bitrate[header.version][i]);
fprintf (stdout, "\n");
for (i = 1; i < 15; i++)
#ifdef NEWENCODE
fprintf (stdout,"%4i ",vbrstats_new[i]);
#else
fprintf (stdout, "%4i ", vbrstats[i]);
#endif
fprintf (stdout, "\n");
}
fprintf (stderr,
"Avg slots/frame = %.3f; b/smp = %.2f; bitrate = %.3f kbps\n",
(FLOAT) sentBits / (frameNum * 8),
(FLOAT) sentBits / (frameNum * 1152),
(FLOAT) sentBits / (frameNum * 1152) *
s_freq[header.version][header.sampling_frequency]);
if (fclose (musicin) != 0) {
fprintf (stderr, "Could not close \"%s\".\n", original_file_name);
exit (2);
}
fprintf (stderr, "\nDone\n");
time(&end_time);
total_time = end_time - start_time;
printf("total time is %d\n", total_time);
exit (0);
}
五、输出音频的采样率和目标码率
运行代码,得到:
采样率为22.1kMz
目标码率为96kbps
六、选择某个数据帧,输出该帧所分配的比特数、该帧的比例因子、该帧的比特分配结果
FILE* output;
output = fopen("D:\\大学三年级\\数据压缩\\实验\\7.MPG音频编码\\m2aenc\\test\\output.txt", "w");
if (frameNum == 20)
{
int k, t, i;
fprintf(output, "第%d帧\n", frameNum);
fprintf(output, "可用比特数=%d\n", adb);
fprintf(output, "比例因子:\n");
for (k = 0; k < nch; k++)
{
fprintf(output, "声道[%d]\n", k);
for (i = 0; i < frame.sblimit; i++)
{
fprintf(output, "子带[%d]:", i);
for (t = 0; t < 3; t++)
{
fprintf(output, "%d\t", scalar[k][t][i]);
}
fprintf(output, "\n");
}
}
}
if (frameNum == 20)
{
int k, i;
fprintf(output, "比特分配:\n");
for (k = 0; k < nch; k++)
{
fprintf(output, "声道[%d]\n", k);
for (i = 0; i < frame.sblimit; i++)
{
fprintf(output, "子带[%d]:%d\n", i, bit_alloc[k][i]);
}
}
}
输出: