欢迎您访问程序员文章站本站旨在为大家提供分享程序员计算机编程知识!
您现在的位置是: 首页

【Detectron2】入门01-一些基础函数

程序员文章站 2022-07-14 21:43:18
...

github:https://github.com/facebookresearch/detectron2/blob/master/GETTING_STARTED.md

colab:https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5

cfg.MODEL.WEIGHTS = model_zoo.get_config_file("detectron2://xx")

后面的地址在下面查:

https://github.com/facebookresearch/detectron2/blob/master/MODEL_ZOO.md

import detectron2
from detectron2.utils.logger import setup_logger
setup_logger()

from detectron2 import model_zoo
from detectron2.engine import DefaultPredctor
from detectron2.config import get_cfg
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog, DatasetCatalog

# 载入图片
im = cv2.imread(“./input.jpg”)
cv2.imshow(im)

# 创建一个detectron2 config
# 和detectron2 DefaultPredictor来inference这张图片
# config确定模型,并调整模型参数
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file(“COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml
”))
cfg.MODEL.ROI_HEADS.SCORE_THRESH_THES = 0.5 #设置阈值
cfg.MODEL.WEIGHTS = model.zoo,get_checkpoint_url(“COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml
")

# predict
predictor = DefaultPredictor(cfg)
outputs = predictor(im)

print(outputs["instances"].pred_classes)
print(outputs["instances"].pred_boxes)

# 使用Visualizer来可视化结果
v = Visualizer(im[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2)
out = v.draw_instance_predictions(outputs["instances"].to("cpu"))
cv2_imshow(out.get_image()[:, :, ::-1])

【Detectron2】入门01-一些基础函数